4.函數(shù)$f(x)={x^3}+{x^{-1}}-{x^{\frac{1}{2}}}$的奇偶性為(  )
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.非奇非偶函數(shù)

分析 確定函數(shù)的定義域看其是否關(guān)于原點(diǎn)對稱,判斷f(x)奇偶性,即找出f(-x)與f(x)之間的關(guān)系從而可得結(jié)論

解答 解:由題意,函數(shù)的定義域為[0,+∞),
∴函數(shù)$f(x)={x^3}+{x^{-1}}-{x^{\frac{1}{2}}}$為非奇非偶函數(shù).
故選:D.

點(diǎn)評 本題主要考查了函數(shù)的奇偶性的判定,在定義域關(guān)于原點(diǎn)對稱的前提下,可根據(jù)定義判定函數(shù)奇偶性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若直線ax+by-1=0(a>0,b>0)過曲線y=1+sinπx(0<x<2)的對稱中心,則y=tan$\frac{(a+b)x}{2}$的最小正周期為( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,sin2A+sin2B=sin2C
(1)求角C
(2)若b2+c2-a2=$\sqrt{3}$bc,求角B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知連續(xù)函數(shù)y=f(x)在區(qū)間[1,2]內(nèi)只有一個零點(diǎn),為了求這個零點(diǎn)的精確度為0.1的近似值,首先32等分區(qū)間[1,2],并將等分點(diǎn)和區(qū)間端點(diǎn)1、2按從小到大順序依次記為x0、x1、x2、x3…x32,然后以[x0,x32](即[1,2])為起始區(qū)間,使用二分法逐步逼近尋找符合精確度要求的零點(diǎn)近似值所在區(qū)間,如果事實(shí)上零點(diǎn)所在區(qū)間是(x18,x19),那么按前述方法探求所得的區(qū)間應(yīng)是(  )
A.(x18,x20B.(x17,x19C.(x16,x20D.(x17,x20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.直線2x-y+c=0與圓(x-1)2+(y+1)2=6交于A,B兩點(diǎn),若以AB為直徑的圓過原點(diǎn),求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知兩個正數(shù)x,y滿足x+y=4,求使不等式$\frac{1}{x}+\frac{4}{y}≥m$恒成立的實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=cos2x-2sinx的最大值與最小值分別為( 。
A.3,-1B.3,-2C.2,-1D.2,-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)一個矩形的周長為20,其中一邊長為x,面積為y.
①把y表示為x的函數(shù),并寫出定義域;
②求該函數(shù)的值域,并畫出該函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)向量$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,且|$\overrightarrow{a}$|=4,|$\overrightarrow$|=2.
(1)求|$\overrightarrow{a}$+$\overrightarrow$|;
(2)求|3$\overrightarrow{a}$-4$\overrightarrow$|;
(3)求($\overrightarrow{a}$-2$\overrightarrow$)•($\overrightarrow{a}$+$\overrightarrow$).

查看答案和解析>>

同步練習(xí)冊答案