6.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,-π<φ<0)的最小正周期是π,函數(shù)圖象過點(diǎn)P(0,1),則函數(shù)f(x)=sin(ωx+φ)(  )
A.在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞減B.在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞增
C.在區(qū)間[-$\frac{π}{3}$,$\frac{π}{6}$]上單調(diào)遞減D.在區(qū)間[-$\frac{π}{3}$,$\frac{π}{6}$]上單調(diào)遞增

分析 利用函數(shù)的周期求出ω,利用函數(shù)的圖象的平移經(jīng)過的點(diǎn),列出方程結(jié)合-π<φ<0,然后利用正弦函數(shù)的單調(diào)性求解即可.

解答 解:依題意函數(shù)f(x)=sin(ωx+φ)(ω>0,-π<φ<0)的最小正周期是π,
可得ω=2,f(x)=sin(2x+φ),
平移后得到的函數(shù)是$y=sin(2x+φ+\frac{2π}{3})$,其圖象過(0,1),
所以,$sin(φ+\frac{2π}{3})=1$,
$ϕ+\frac{2π}{3}=2kπ+\frac{π}{2}$,k∈Z,
因?yàn)?π<φ<0,可得k=0,
所以,$φ=-\frac{π}{6}$,$f(x)=sin(2x-\frac{π}{6})$,
$-\frac{π}{2}+2kπ≤2x-\frac{π}{6}≤\frac{π}{2}+2kπ$,k∈Z,
當(dāng)k=0時(shí),解得$-\frac{π}{6}≤x≤\frac{π}{3}$,
函數(shù)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞增.
故選:B.

點(diǎn)評(píng) 本題考查三角函數(shù)的簡(jiǎn)單性質(zhì)的應(yīng)用,三角函數(shù)的圖形的平行,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知sin$\frac{φ}{2}$=$\frac{3}{5}$,cos$\frac{φ}{2}$=-$\frac{4}{5}$,試確定角φ所在的象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)是奇函數(shù),若x>0時(shí),f(x)=sinx+cosx,則x<0時(shí),f(x)=sinx-cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.復(fù)數(shù)z滿足|z-2+i|=1,則|z+1-2i|的最小值為3$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.過拋物線y2=4x的焦點(diǎn)F的直線l交該拋物線于A,B兩點(diǎn),點(diǎn)A在第一象限,若|AF|=3,則直線l的斜率為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.據(jù)統(tǒng)計(jì),2015年“雙11”天貓總成交金額突破912億元.某購物網(wǎng)站為優(yōu)化營銷策略,對(duì)在11月11日當(dāng)天在該網(wǎng)站進(jìn)行網(wǎng)購消費(fèi)且消費(fèi)金額不超過1000元的1000名網(wǎng)購者(其中有女性800名,男性200名)進(jìn)行抽樣分析.采用根據(jù)性別分層抽樣的方法從這1000名網(wǎng)購者中抽取100名進(jìn)行分析,得到下表:(消費(fèi)金額單位:元)
女性消費(fèi)情況:
消費(fèi)金額(0,200)[200,400)[400,600)[600,800)[800,1000]
人數(shù)5101547x
男性消費(fèi)情況:
消費(fèi)金額(0,200)[200,400)[400,600)[600,800)[800,1000]
人數(shù)2310y2
(Ⅰ)計(jì)算x,y的值;在抽出的100名且消費(fèi)金額在[800,1000](單位:元)的網(wǎng)購者中隨機(jī)選出兩名發(fā)放網(wǎng)購紅包,求選出的兩名網(wǎng)購者恰好是一男一女的概率;
(Ⅱ)若消費(fèi)金額不低于600元的網(wǎng)購者為“網(wǎng)購達(dá)人”,低于600元的網(wǎng)購者為“非網(wǎng)購達(dá)人”,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫2×2列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過0.010的前提下認(rèn)為“是否為‘網(wǎng)購達(dá)人’”與性別有關(guān)?”
女士男士總計(jì)
網(wǎng)購達(dá)人50      5   55    
非網(wǎng)購達(dá)人301545
總計(jì)8020100
附:
P(k2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879
(${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$sinα=\frac{{\sqrt{5}}}{5}$且α是銳角,tanβ=-3,且β為鈍角,則α+β的值為( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.$f(x)=2\sqrt{3}sinx-2cosx$,則f(x)的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知一個(gè)多面體的內(nèi)切球的半徑為3,多面體的表面積為15,則此多面體的體積為( 。
A.45B.15C.D.15π

查看答案和解析>>

同步練習(xí)冊(cè)答案