A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 由f(x)的表達式,先求出函數(shù)在[0,6]上的解析式和圖象,由g(x)=f(x)-|lnx|=0得f(x)=|lnx|,然后作出兩個函數(shù)的圖象,利用數(shù)形結(jié)合判斷交點個數(shù)進行求解即可.
解答 解:f(x)=$\frac{3}{k}$sin$\frac{π(x-2k+2)}{2}$=$\frac{3}{k}$sin($\frac{π}{2}$x+(1-k)π),
若k=1,則f(x)=3sin$\frac{π}{2}$x,x∈[0,2],
若k=2,則f(x)=$\frac{3}{2}$sin($\frac{π}{2}$x-π)=-$\frac{3}{2}$sin$\frac{π}{2}$x,x∈[2,4],
若k=3,則f(x)=sin($\frac{π}{2}$x-2π)=sin$\frac{π}{2}$x,x∈[4,6],
由g(x)=f(x)-|lnx|=0得f(x)=|lnx|,
作出函數(shù)f(x)與y=|lnx|在[0,6]上的圖象,
當(dāng)k≥3時,f(x)≤1,
由圖象可知兩個函數(shù)有4個交點,即函數(shù)g(x)的零點個數(shù)為4個,
故選:D.
點評 本題主要考查函數(shù)零點個數(shù)的判斷,利用函數(shù)與方程之間的關(guān)系,轉(zhuǎn)化為兩個函數(shù)的交點個數(shù)問題,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10個 | B. | 9個 | C. | 8個 | D. | 2個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-2≤x<0或1<x≤3} | B. | {x|-2<x<0或1≤x<3} | C. | {x|x≤-2或x>3} | D. | {x|x<-2或x≥3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-$\frac{1}{2}$]∪[1,+∞) | B. | (-∞,-1]∪[1,+∞) | C. | (-∞,-1]∪[0,+∞) | D. | [$\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在β內(nèi)必存在與a平行的直線 | B. | 在β內(nèi)必存在與a垂直的直線 | ||
C. | 在β內(nèi)不存在與a平行的直線 | D. | 在β內(nèi)不一定存在與a垂直的直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com