分析 先根據(jù)定積分的計算法則求出a的值,再根據(jù)二項式展開式的通項公式求出第6項的系數(shù).
解答 解:a=$\int_{-1}^1{(sinx+1)dx}$=(-cosx+x)${|}_{-1}^{1}$=2,
∴${(a{x^2}-\frac{1}{x})^6}$=(2x2-$\frac{1}{x}$)6,
∴Tk+1=${C}_{6}^{k}(2{x}^{2})^{6-k}•(-\frac{1}{x})^{k}$,
∴T6=T5+1=-6•2x-3=-12x-3,
∴展開式中的第6項的系數(shù)為-12,
故答案為:-12.
點評 本題考查了定積分的計算法則和根據(jù)二項式展開式的通項公式,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2014}{2015}$ | B. | $\frac{2013}{2014}$ | C. | $\frac{3}{2015}$ | D. | $\frac{9}{2015}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-4<x<1} | B. | {x|-4<x<-3} | C. | {x|-3<x<1} | D. | {x|-3<x<2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 當$x∈(0,\frac{π}{2})$時,$sinx+\frac{1}{sinx}≥2$ | B. | 當x>0時,$\sqrt{x}+\frac{1}{{\sqrt{x}}}≥2$ | ||
C. | 當x≥2時,$x+\frac{1}{x}$的最小值為2 | D. | 當0<x≤2時,$x-\frac{1}{x}$無最大值 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
x | 1 | 2 | 3 | 4 | 5 |
f(x) | 4 | 1 | 3 | 5 | 2 |
A. | 4 | B. | 1 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30 | B. | 50 | C. | 60 | D. | 70 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com