11.設(shè)函數(shù)f(x)=$\frac{1}{2}$•4x-3•2x+5的定義域為[$\frac{1}{2}$,2],求y=f(x)的值域,并求出最值時對應(yīng)的x的值.

分析 配方得到$f(x)=\frac{1}{2}({2}^{x}-3)^{2}+\frac{1}{2}$,令2x=t,t$∈[\sqrt{2},4]$,設(shè)y=f(x),從而得到$y=\frac{1}{2}(t-3)^{2}+\frac{1}{2}$,這樣便可得出y的最大、最小值,以及對應(yīng)的t及x的取值,從而便可得出y=f(x)的值域.

解答 解:$f(x)=\frac{1}{2}({2}^{x}-3)^{2}+\frac{1}{2}$;
令${2}^{x}=t,t∈[\sqrt{2},4]$,設(shè)y=f(x),則:
$y=\frac{1}{2}(t-3)^{2}+\frac{1}{2}$;
∴t=3,即2x=3,x=log23時,y取最小值$\frac{1}{2}$;
t=$\sqrt{2}$,即${2}^{x}=\sqrt{2}$,x=$\frac{1}{2}$時,y取最大值$\frac{1}{2}(\sqrt{2}-3)^{2}+\frac{1}{2}=6-3\sqrt{2}$;
∴y=f(x)的值域為[$\frac{1}{2},6-3\sqrt{2}$].

點評 考查函數(shù)值域的概念,配方法求二次函數(shù)在閉區(qū)間上的值域,求二次函數(shù)的最值,要熟悉二次函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.命題p:?x∈[0,1],9x-3x-a=0,若命題¬p是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.條件P:|x-4|>1,條件Q:$\frac{1}{3-x}$>1,則¬P是¬Q的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知兩個非零平面向量$\overrightarrow{a}$,$\overrightarrow$滿足:對任意的實數(shù)λ都有|$\overrightarrow{a}$+λ$\overrightarrow$|≥|$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$|
(1)若|$\overrightarrow$|=2,求$\overrightarrow{a}$•$\overrightarrow$的值;
(2)若$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{6}$,求$\frac{|2\overrightarrow{a}-t\overrightarrow|}{|\overrightarrow|}$(t∈R)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=log3x+log3(2-x)的單調(diào)遞減區(qū)間是[1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.討論關(guān)于x的方程4x-2x+1-b=0(b∈R)的實根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知a∈R,函數(shù)f(x)=x|x-2a|.
(1)當(dāng)a=1時,寫出函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)a>2時,求函數(shù)y=f(x)在區(qū)間[1,2]上的最小值;
(3)設(shè)a≠0,若函數(shù)y=f(x)在(m,n)上既有最大值又有最小值,請分別求出m、n的取值范圍.(用a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如果tanα=3,那么$\frac{4sinα-3cosα}{5cosα+3sinα}$=$\frac{9}{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.不等式23x-1>$\frac{\sqrt{2}}{2}$的解集是( 。
A.(1,+∞)B.($\frac{1}{6}$,+∞)C.(-∞,1)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

同步練習(xí)冊答案