如圖,四邊形ABCD為正方形,PA⊥平面ABCD,且AD=2PA,E、F、G、H分別是線段PA、PD、CD、BC的中點.
(Ⅰ)求證:BC∥平面EFG;
(Ⅱ)求證:DH⊥平面AEG.
考點:直線與平面垂直的判定,直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(Ⅰ)由三角形中位線定理得AD∥EF,由平行公理得BC∥EF,由此能證明BC∥平面EFG.
(Ⅱ)由線面垂直得PA⊥DH,即AE⊥DH,由三角形全等得DH⊥AG,由此能證明DH⊥平面AEG.
解答: 解:(Ⅰ)因為E,F(xiàn)分別為PA,PD中點,所以AD∥EF,
因為BC∥AD,所以BC∥EF,…(2分)
因為BC?平面EFG,EF?平面EFG,…(4分)
所以BC∥平面EFG.…(6分)
(Ⅱ)因為PA⊥平面ABCD,所以PA⊥DH,
即AE⊥DH,…(8分)
因為△ADG≌△DCH,
所以∠HDC=∠DAG,
∠AGD+∠DAG=90°,
所以∠AGD+∠HDC=90°,
所以DH⊥AG,
又因為AE∩AG=A,所以DH⊥平面AEG.…(12分)
點評:本題考查直線與平面平行的證明,考查直線與平面垂直的證明,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

ρcosθ+2ρsinθ=1的直角坐標方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(x+2)=f(x)+1,且x∈[0,1]時,f(x)=4x,x∈(1,2)時,f(x)=
f(1)
x
,令g(x)=2f(x)-x-4x∈[-6,2],則函數(shù)g(x)的零點個數(shù)為( 。
A、9B、8C、7D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,若
OB
=a1
OA
+a20
OC
,且A、B、C三點共線(該直線不過點O),則S20=( 。
A、10B、11C、20D、21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果0<x<1,0<y<1,那么關(guān)于0<
x
y
<1(  )
A、正確B、錯誤C、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,an=
3
2
n-
21
2
,求數(shù)列{|an|﹜的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>b>0,且m=a+
1
(a-b)b

(Ⅰ)試利用基本不等式求m的最小值t;
(Ⅱ)若實數(shù)x,y,z滿足x+y+z=3且x2+4y2+z2=t,求證:|x+2y+z|≤3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-kx+1.
(1)若k=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0恒成立,試確定實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2px(p>0)的焦點F到直線x-y+1=0的距離為
2

(1)求拋物線的方程;
(2)如圖,過點F作兩條直線分別交拋物線于A、B和C、D,過點F作垂直于x軸的直線分別交AC和BD于點M,N.求證:|MF|=|NF|.

查看答案和解析>>

同步練習冊答案