3.不等式x2+6x+9≥0的解集為(  )
A.B.RC.{x|x≤-3}D.{x|x≤-3或x≥3}

分析 配方得到x2+6x+9=(x+3)2≥0,繼而得到不等式的解集.

解答 解:x2+6x+9=(x+3)2≥0恒成立,
∴不等式x2+6x+9≥0的解集為R.
故選:B.

點(diǎn)評(píng) 本題考查了一元二次不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.橢圓$\frac{{x}^{2}}{5a}+\frac{{y}^{2}}{4{a}^{2}+1}=1$的焦點(diǎn)在x軸上,則它的離心率e的取值范圍為$(0,\frac{\sqrt{5}}{5}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.比較log2(3x+1)與${log}_{\sqrt{2}}$(x一3)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{8,x≥m}\\{{x}^{2}+4x-3,x<m}\end{array}\right.$,若函數(shù)g(x)=f(x)-2x恰有三個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是(1,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知x+x-1=4(0<x<1),求$\frac{{x}^{2}-{x}^{-2}}{{x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(3x-2)的定義域是[-2,0),則函數(shù)f(x)的定義域是[-8,-2);若函數(shù)f(x)的定義域是(-2,4],則f(-2x+2)的定義域是[-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=3x,且f(a+2)=18,g(x)=3ax-4x的定義域?yàn)閇0,1],求出g(x)的解析式和g(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知$\sqrt{4}$=log24,$\sqrt{16}$=log216,通過(guò)考察函數(shù)f(x)=$\sqrt{x}$和g(x)=log2x的圖象,可得到使不等式$\sqrt{x}$<log2x成立的自變量x的取值范圍是(4,16).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若x∈R,則(1-|x|)(1+x)>0等價(jià)于(-1,1)∪(-∞,-1).

查看答案和解析>>

同步練習(xí)冊(cè)答案