分析 (Ⅰ)根據(jù)f(x)為R上的奇函數(shù)便可得到f(0)=0,而由x>0時的解析式便可求出f(2)=$\frac{1}{2}$,從而便得出f(-2)的值;
(Ⅱ)根據(jù)減函數(shù)的定義,設(shè)任意的x1>x2>0,然后作差,通分,從而得到$f({x}_{1})-f({x}_{2})=\frac{3({x}_{2}-{x}_{1})}{{x}_{1}{x}_{2}}$,證明f(x1)<f(x2)便可得到f(x)在(0,+∞)上為減函數(shù).
解答 解:(Ⅰ)f(x)是定義在R上的奇函數(shù);
∴f(0)=0;
x>0時,f(x)=$\frac{3}{x}-1$,∴$f(2)=\frac{1}{2}$;
∴$f(-2)=-f(2)=-\frac{1}{2}$;
(Ⅱ)證明:設(shè)x1>x2>0,則:
$f({x}_{1})-f({x}_{2})=\frac{3}{{x}_{1}}-\frac{3}{{x}_{2}}=\frac{3({x}_{2}-{x}_{1})}{{x}_{1}{x}_{2}}$;
∵x1>x2>0;
∴x2-x1<0,x1x2>0;
∴f(x1)<f(x2);
∴f(x)在(0,+∞)上為減函數(shù).
點評 考查奇函數(shù)的定義,奇函數(shù)在原點有定義時,原點處的函數(shù)值為0,減函數(shù)的定義,以及根據(jù)減函數(shù)的定義證明一個函數(shù)為減函數(shù)的方法和過程,作差的方法比較f(x1),f(x2),作差后是分式的一般要通分.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$ | B. | $\frac{a}$+$\frac{a}$ | C. | $\frac{a+b+2\sqrt{ab}+1}{\sqrt{a}+\sqrt}$ | D. | sinx+$\frac{1}{sinx}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若m⊥α,n?α,則m⊥n | B. | 若m⊥α,m⊥n,則n∥α | C. | 若m∥α,m⊥n,則n⊥α | D. | 若m∥α,n∥α,則m∥n |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | i | B. | -i | C. | -1 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com