16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-3,x≥4}\\{f(x+2),x<4}\end{array}\right.$,則f(-1)的值為2.

分析 根據(jù)分段函數(shù)的表達(dá)式,利用遞推關(guān)系進(jìn)行求解即可.

解答 解:由分段函數(shù)的表達(dá)式得f(-1)=f(-1+2)=f(1)=f(1+2)
=f(3)=f(3+2)=f(5)=5-3=2,
故答案為:2

點評 本題主要考查函數(shù)值的計算,根據(jù)分段函數(shù)的表達(dá)式利用遞推公式進(jìn)行遞推是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=|a-x|+|2x-4|
(1)若a=1,求f(x)的最小值;
(2)若f(a)<f(0),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.兩平行直線x+2y-1=0和x+2y+4=0之間的距離是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.矩形ABCD中,AB<BC,將△ABC沿著對角線AC所在的直線進(jìn)行翻折,記BD中點為M,則在翻折過程中,下列說法錯誤的是( 。
A.存在使得AB⊥DC的位置B.存在使得AB⊥BD的位置
C.存在使得AM⊥DC的位置D.存在使得AM⊥AC的位置

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某制造商制造并出售球形瓶裝的某種飲料,瓶子的制造成本是0.8πr2分,其中r是瓶子的半徑,單位是厘米.已知每出售1mL飲料,制造商可獲利0.2分,且制造商能制作的瓶子的最大半徑為6cm,則瓶子半徑為2cm時,每瓶飲料的利潤最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=ax-2,g(x)=loga|x|(a>0且a≠1),若f(4)•g(-4)<0,則在同一坐標(biāo)系內(nèi)f(x)與g(x)的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=ex-$\frac{1}{2}$x2在點(x0,f(x0))處的切線與直線x+y-6=0垂直,則切點坐標(biāo)為(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.關(guān)于x的不等式組$\left\{\begin{array}{l}{x-1≥{a}^{2}}\\{x-4<2a}\end{array}\right.$有解,則實數(shù)a的取值范圍是( 。
A.[-3,1]B.(-3,1)C.[-1,3]D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知:(1)若a1,a2,a3∈R,則a12+a22+a32≥a1a2+a2a3+a1a3),
(2)若a1,a2,a3,a4∈R,則a12+a22+a32+a42≥$\frac{2}{3}$(a1a2+a1a3+a1a4+a2a3+a2a4+a3a4),
即:三個數(shù)的平方和不小于這三個數(shù)中每兩個數(shù)的乘積的和;四個數(shù)的平方和不小于這四個數(shù)中每兩個數(shù)的乘積的和的三分之二.進(jìn)一步推廣關(guān)于n個數(shù)的平方和的類似不等式為:若a1,a2,…an∈R,則a12+a22+…+an2≥M(a1a2+a1a3+…+a1an+a2a3+a2a4+…+an-1an)(n∈N,n≥3),則M=$\frac{2}{n-1}$.

查看答案和解析>>

同步練習(xí)冊答案