6.如圖,△ABC為圓的內(nèi)接三角形,BD為圓的弦,且BD∥AC.過點A作圓的切線與DB的延長線交于點E,AD與BC交于點F.若AB=AC,AE=6,BD=5.
(1)求證:四邊形AEBC為平行四邊形.
(2)求線段CF的長.

分析 (1)由已知條件推導出∠ABC=∠BAE,從而得到AE∥BC,再由BD∥AC,能夠證明四邊形ACBE為平行四邊形.
(2)由已知條件利用切割線定理求出EB=4,由此能夠求出CF=$\frac{8}{3}$.

解答 (1)證明:∵AE與圓相切于點A,∴∠BAE=∠ACB,
∵AB=AC,∴∠ABC=∠ACB,∴∠ABC=∠BAE,
∴AE∥BC,
∵BD∥AC,∴四邊形ACBE為平行四邊形.
(2)解:∵AE與圓相切于點A,
∴AE2=EB•(EB+BD),即62=EB•(EB+5),
解得EB=4,
根據(jù)(1)有AC=EB=4,BC=AE=6,
設(shè)CF=x,由BD∥AC,得$\frac{AC}{BD}=\frac{CF}{BF}$,
∴$\frac{4}{5}=\frac{x}{6-x}$,解得x=$\frac{8}{3}$,
∴CF=$\frac{8}{3}$.

點評 本題考查平行四邊形的證明,考查線段長的求法,是中檔題,解題時要認真審題,注意切割線定理的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知i是虛數(shù)單位,則復(fù)數(shù)$\frac{1-2i}{1+2i}$=( 。
A.-$\frac{3}{5}$-$\frac{4}{5}$iB.-$\frac{3}{5}$+$\frac{4}{5}$iC.$\frac{3}{5}$-$\frac{4}{5}$iD.$\frac{3}{5}$+$\frac{4}{5}$i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設(shè)a∈R,函數(shù)f(x)=cosx(2asinx-cosx)+sin2x的圖象的一條對稱軸是直線$x=-\frac{π}{6}$.
(Ⅰ)求$f(-\frac{π}{3})$的值和a的值;
(Ⅱ)求函數(shù)f(x)在$[\frac{π}{4},\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.等差數(shù)列{an}的公差d≠0,a1=20,且a3,a7,a9成等比數(shù)列.Sn為{an}的前n項和,則S10的值為110.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,若$bsinA=2csinB,a=4,cosB=\frac{1}{4}$,則邊長b的等于4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.極坐標系中,和點(3,$\frac{π}{6}$)表示同一點的是(3,2kπ+$\frac{π}{6}$),k∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在直角坐標系xOy中,點P(1,0),以原點O為極點,以x軸正半軸為極軸,建立極坐標系,曲線C的方程為:ρ=$\frac{2}{\sqrt{1+3si{n}^{2}θ}}$.
(1)求曲線C的直角坐標方程;
(2)直線L過點P交曲線C于A,B兩點,且滿足|PA|•|PB|=$\frac{6}{5}$,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.如圖是一個正方體的平面展開圖,A,B,C均為所在棱的中點,D為正方體的頂點,若正方體的棱長為2,則在正方體中,封閉折線ABCDA的長為3$\sqrt{2}+\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知點C在橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,以C為圓心的圓與x軸相切于橢圓的右焦點F,若圓C與y軸相切,則橢圓的離心率為( 。
A.$\sqrt{2}$-1B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{5}-1}{2}$D.$\sqrt{3}$-1

查看答案和解析>>

同步練習冊答案