分析 (1)由條件利用誘導公式、余弦函數(shù)的單調性,求得函數(shù)f(x)的減區(qū)間.
(2)由條件利用余弦函數(shù)的定義域和值域求得f(x)的最值.
解答 解:(1)函數(shù)f(x)=2cos($\frac{π}{4}$-$\frac{x}{2}$)=2cos($\frac{x}{2}$-$\frac{π}{4}$),
令2kπ≤$\frac{x}{2}$-$\frac{π}{4}$≤2kπ+π,k∈z,求得4kπ+$\frac{π}{2}$≤x≤4kπ+$\frac{5π}{2}$,
故函數(shù)f(x)的減區(qū)間為[4kπ+$\frac{π}{2}$,4kπ+$\frac{5π}{2}$],k∈z.
(2)由x∈[-π,π],可得$\frac{x}{2}$-$\frac{π}{4}$∈[-$\frac{3π}{4}$,$\frac{π}{4}$],故當$\frac{x}{2}$-$\frac{π}{4}$=0時,函數(shù)取得最大值為2;
當$\frac{x}{2}$-$\frac{π}{4}$=-π時,函數(shù)取得最小值為-2.
點評 本題主要考查誘導公式、余弦函數(shù)的單調性、定義域和值域,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com