分析 (1)由題意可得f(0)=f($\frac{π}{3}$),即 $\frac{1}{2}$=$\frac{a}{2}$sin2($\frac{π}{3}$)+$\frac{1}{2}$cos2($\frac{π}{3}$),由此求得a的值.
(2)先求出f(x)的解析式,由2k$π-\frac{π}{2}$≤≤2k$π+\frac{π}{2}$,k∈Z,可解得函數(shù)f(x)的單調(diào)增區(qū)間;
(3)利用列表、描點、連線,畫出函數(shù)f(x)在x∈[0,π]上的圖象即可.
解答 解:(1)∵$\overrightarrow m=(asinx+cosx,1),\overrightarrow n=(cosx,-\frac{1}{2})$,
∴f(x)=$\overrightarrow m•\overrightarrow n$=asinxcosx+cos2x-$\frac{1}{2}$=$\frac{a}{2}$sin2x+$\frac{1}{2}$cos2x,
∵函數(shù)f(x)=$\overrightarrow m•\overrightarrow n$的圖象的一條對稱軸為直線x=$\frac{π}{6}$.
∴f(0)=f($\frac{π}{3}$),
∴$\frac{1}{2}$=$\frac{a}{2}$sin2($\frac{π}{3}$)+$\frac{1}{2}$cos2($\frac{π}{3}$),
∴a=$\sqrt{3}$.-----------------------(4分)
(2)∵由(1)可得f(x)=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x=sin(2x+$\frac{π}{6}$),
∴由2k$π-\frac{π}{2}$≤≤2k$π+\frac{π}{2}$,k∈Z,
可解得函數(shù)f(x)的單調(diào)增區(qū)間為:[k$π-\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.-----------------------(8分)
(3)列表---------------------------------------------(10分)
x | 0 | $\frac{π}{6}$ | $\frac{5π}{12}$ | $\frac{2π}{3}$ | $\frac{11π}{12}$ | π |
2x+$\frac{π}{6}$ | $\frac{π}{6}$ | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π | $\frac{13π}{6}$ |
f(x) | $\frac{1}{2}$ | 1 | 0 | -1 | 0 | $\frac{1}{2}$ |
點評 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了五點法畫正弦函數(shù)圖象的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<0 | B. | 0<a<$\frac{1}{2}$ | C. | $\frac{1}{2}$<a<1 | D. | a≤0或a>1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | M={整數(shù)},N={整數(shù)集} | B. | M={(3,2)},N={(2,3)} | ||
C. | M={(x,y)|x+y=1},N={(y,x)|x+y=1} | D. | M={1,2},N={(1,2)} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com