9.設(shè)$n=\int_0^{\frac{π}{2}}{4sinxdx}$,則二項(xiàng)式${({x-\frac{2}{x}})^n}$的展開(kāi)式的常數(shù)項(xiàng)是24.

分析 先利用定積分求出n=4,在二項(xiàng)式展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求得r的值,即可求得展開(kāi)式中的常數(shù)項(xiàng)的值.

解答 解:∵$n=\int_0^{\frac{π}{2}}{4sinxdx}$=-4cosx${|}_{0}^{\frac{π}{2}}$=0+4=4,則二項(xiàng)式${({x-\frac{2}{x}})^n}$=${(x-\frac{2}{x})}^{4}$ 的展開(kāi)式的通項(xiàng)公式為Tr+1=${C}_{4}^{r}$•x4-r•${(-\frac{2}{x})}^{r}$=${C}_{4}^{r}$•(-2)r•x4-2r,
令4-2r=0,求得r=2,可得常數(shù)項(xiàng)為 ${C}_{4}^{2}$•4=24,
故答案為:24.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開(kāi)式的通項(xiàng)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在△ABC中,∠A=60°,求sinB+sinC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知集合A={x|1<x<8},集合B={x|x2-5x-14≥0}
(Ⅰ)求集合B
(Ⅱ)求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某學(xué)校團(tuán)委組織了“文明出行,愛(ài)我中華”的知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(單位:分)整理后,得到如下頻率分布直方圖(其中分組區(qū)間為[40,50),[50,60),…,[90,100]),已知成績(jī)?cè)赱50,60 )的學(xué)生有9人,
(1)求成績(jī)?cè)赱70,80)的學(xué)生人數(shù),并補(bǔ)全此頻率分布直方圖;
(2)求這次考試平均分的估計(jì)值;
(3)若從成績(jī)?cè)赱40,50)和[90,100]的學(xué)生中任選兩人,求他們的成績(jī)?cè)谕环纸M區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.甲、乙兩位學(xué)生參加某項(xiàng)競(jìng)賽培訓(xùn),在培訓(xùn)期間,他們參加的5項(xiàng)預(yù)賽成績(jī)的莖葉圖記錄如下:
(Ⅰ)從甲、乙兩人的成績(jī)中各隨機(jī)抽取一個(gè),求甲的成績(jī)比乙高的概率;
(Ⅱ)現(xiàn)要從中選派一人參加該項(xiàng)競(jìng)賽,從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選派哪位學(xué)生參加合適?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.當(dāng)a>1時(shí),在同一坐標(biāo)系中,函數(shù)y=ax與y=logax的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知四棱臺(tái)ABCD-A1B1C1D1的上下底面分別是邊長(zhǎng)為2和4的正方形,AA1=4且AA1⊥底面ABCD,點(diǎn)P為DD1的中點(diǎn),Q為BC邊上的一點(diǎn).
(I)若PQ∥面A1ABB1,求出PQ的長(zhǎng);
(Ⅱ)求證:AB1⊥面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知直線x-y+a=0與圓心為C的圓x2+y2+2x-4y-4=0相交于A,B兩點(diǎn),且AC⊥BC,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若tanα=4,則$\frac{sinαsin(\frac{π}{2}-α)}{sin^2α+cos2α+cos^2α}$的值為( 。
A.-2B.-1C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案