分析 由題意可設(shè)M的坐標(biāo)為(3-2t,t),由M到直線l1和l2的距離相等可得t值,由兩點(diǎn)可得直線方程.
解答 解:∵所截得的線段的中點(diǎn)M在直線x+2y-3=0,
∴可設(shè)M的坐標(biāo)為(3-2t,t),
由M到直線l1和l2的距離相等可得$\frac{|3-2t-t+1|}{\sqrt{{1}^{2}+(-1)^{2}}}$=$\frac{|3-2t-t-2|}{\sqrt{{1}^{2}+(-1)^{2}}}$,
解得t=$\frac{5}{6}$,代入可得M的坐標(biāo)為($\frac{4}{3}$,$\frac{5}{6}$),
由直線l過(guò)點(diǎn)(2,4)和($\frac{4}{3}$,$\frac{5}{6}$)可得直線l的斜率k=$\frac{19}{4}$,
∴所求直線的方程為y-4=$\frac{19}{4}$(x-2),即19x-4y-22=0
點(diǎn)評(píng) 本題考查直線的一般式方程和平行關(guān)系,涉及點(diǎn)到直線的距離公式,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{4}{5}$ | B. | -$\frac{7}{25}$ | C. | $\frac{4}{5}$ | D. | $\frac{7}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com