5.已知$\frac{si{n}^{2}θ+4}{cosθ+1}$=2,則(cosθ+3)(sinθ+1)的值為( 。
A.2B.3C.4D.5

分析 由題意可得,sin2θ=2cosθ-2≥0,求得cosθ≥1,可得cosθ=1,sinθ=0,從而求得要求式子的值.

解答 解:∵$\frac{si{n}^{2}θ+4}{cosθ+1}$=2,∴sin2θ=2cosθ-2≥0,∴cosθ≥1,∴cosθ=1,sinθ=0,
則(cosθ+3)(sinθ+1)=4×1=4,
故選:C.

點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系,三角函數(shù)的值域,求得cosθ=1,sinθ=0,是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=lnx+$\frac{a}{x}$(a∈R)
(1)若0<x≤3時,函數(shù)f(x)圖象上任意一點(diǎn)P(x0,y0)處切線的斜率k$≤\frac{1}{2}$恒成立,求實(shí)數(shù)a的取值范圍.
(2)當(dāng)a=0時,方程f(x)=x(m-1)在區(qū)間[1,e2]內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知i為虛數(shù)單位,復(fù)數(shù)z=($\frac{i-1}{i+1}$)3,則z的共軛復(fù)數(shù)是( 。
A.iB.-iC.1-iD.-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若-$\frac{π}{4}$≤x≤$\frac{π}{4}$,則函數(shù)y=$\frac{2ta{n}^{2}x-3tanx}{(2tanx+3)^{2}}$的最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=$\frac{a{x}^{3}}{3}$+$\frac{b{x}^{2}}{2}$+cx,集合A={x|f′(x)=x}.
(1)若A={1},且a≥1,f′(x)在區(qū)間[-2,2]上的最大值、最小值分別是M、m,記g(a)=M+m,求g(a)的最小值;
(2)若A={1,2},h(x)=f(x)-f′(x)在R上不單調(diào),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知O為坐標(biāo)原點(diǎn),過點(diǎn)P(0,2)的直線l與圓O:x2+y2=1交于兩點(diǎn)A,B.
(1)求直線l的斜率k的取值范圍;
(2)若Q(0,1)且AQ∥OB,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,a1+a2=1,a3+a4=2,則log2$\frac{{a}_{2011}+{a}_{2012}+{a}_{2013}+{a}_{2014}}{3}$=1005.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\frac{\sqrt{2}}{2}$|$\overrightarrow$|,且($\overrightarrow{a}$-$\overrightarrow$)⊥(3$\overrightarrow{a}$+2$\overrightarrow$),則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,用5種不同的顏色涂這些正方形,讓每個正方形都涂上一種顏色,且相鄰的正方形的顏色不同,若顏色可反復(fù)使用,則不同的涂色方法有( 。
A.120種B.240種C.320種D.625種

查看答案和解析>>

同步練習(xí)冊答案