14.函數(shù)f(x)=cos2x+4sinx的值域是[-5,3].

分析 使用二倍角公式將f(x)化成關(guān)于sinx的二次函數(shù)求解.

解答 解:f(x)=1-2sin2x+4sinx=-2(sinx-1)2+3.
∴當(dāng)sinx=1時,f(x)取得最大值3,
當(dāng)sinx=-1時,f(x)取得最小值-5.
故答案為:[-5,3].

點評 本題考查了三角函數(shù)的值域,二次函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.己知函數(shù)f(x)=sin4ωx-cos4ωx(ω>0)的最小正周期是π,則ω=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若sin(270°-α)=cos240°sin(α-180°),則cos2α+3sinαcosα-2sin2α=-$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知兩個等差數(shù)列{an}和{bn}的前n項和分別為Sn和Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+45}{n+3}$,則使得$\frac{{a}_{n}}{_{n}}$為整數(shù)的正整數(shù)n的最大值是35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.化簡tan(27°-α)•tan(49°-β)•tan(63°+α)•tan(139°-β)的結(jié)果為( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若等差數(shù)列共有10項,其奇數(shù)項的和為15,偶數(shù)項的和為25,則該數(shù)列的首項a1=-5,公差d=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在等差數(shù)列{an}中,a1+a5=8,a4=7.
(1)求數(shù)列的第10項.
(2)問112是數(shù)列{an}的第幾項?
(3)數(shù)列{an}從第幾項開始大于30?
(4)在80到110之間有多少項?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求函數(shù)f(x)=lnx+ln(1-x)+x的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,$\overrightarrow{AB}=\overrightarrow c,\overrightarrow{BC}=\overrightarrow a,\overrightarrow{CA}=\overrightarrow b$,下列推導(dǎo)不正確的是( 。
A.若$\overrightarrow a•\overrightarrow b>0$,則△ABC為鈍角三角形B.$\overrightarrow a•\overrightarrow b=0$,則△ABC為直角三角形
C.$\overrightarrow a•\overrightarrow b=\overrightarrow b•\overrightarrow c$,則△ABC為等腰三角形D.$\overrightarrow c•({\overrightarrow a+\overrightarrow b+\overrightarrow c})=0$,則△ABC為正三角形

查看答案和解析>>

同步練習(xí)冊答案