19.f(x)=2x+3,x∈{-1,0,2},則f(x)的值域?yàn)閧1,3,7}.

分析 分別把x=-1,0,2代入函數(shù)解析式,求得函數(shù)值得答案.

解答 解:∵f(x)=2x+3,x∈{-1,0,2},
∴f(-1)=1,f(0)=3,f(2)=7.
則f(x)的值域?yàn)閧1,3,7}.
故答案為:{1,3,7}.

點(diǎn)評(píng) 本題考查函數(shù)的值域及其求法,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且對(duì)任意x∈R都有f(x)=f(x+4),當(dāng),x∈(0,2)時(shí),f(x)=2x,則f(2015)的值為(  )
A.-2B.-1C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知數(shù)列{an}滿足:a1+2a2+…+nan=2-$\frac{n+2}{2^n}$
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=log2$\frac{1}{2a_n^2},且{c_n}=\frac{b_n}{a_n}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{asinx+2,x≥0}\\{{x}^{2}+2a,x<0}\end{array}\right.$(其中a∈R)的值域?yàn)镾,若[1,+∞)⊆S,則a的取值范圍是( 。
A.(-∞,$\frac{1}{2}$)B.[1,$\frac{3}{2}$]∪($\frac{7}{4}$,2]C.(-∞,$\frac{1}{2}$)∪[1,2]D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.求數(shù)列2-$\frac{1}{3}$,4+$\frac{1}{9}$,6-$\frac{1}{27}$,8+$\frac{1}{81}$,…,2n+$\frac{1}{(-3)^{n}}$的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知點(diǎn)A(-2,1),B(2,5),則線段AB的垂直平分線方程是x+y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知a>0,且a≠1,試討論函數(shù)f(x)=a${\;}^{{x}^{2}+6x+17}$的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知兩直線l1:xcosθ-y(2cos2θ-1)+6=0和l2:2xsinθ+$\sqrt{3}$y+3=0,當(dāng)l1⊥l2時(shí),θ=$\frac{1}{2}$kπ+$\frac{π}{6}$,k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=ln(3-x)+$\frac{1}{\sqrt{x+2}}$的定義域?yàn)榧螦,集合B={x|x<a}.
(1)求集合A;
(2)若A?B,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案