A. | 4 | B. | 4或-3 | C. | -3或-1 | D. | -3 |
分析 求出原函數(shù)的導(dǎo)函數(shù),設(shè)出A,B點(diǎn)的坐標(biāo),得到函數(shù)在A,B點(diǎn)處的導(dǎo)數(shù)值,由A,B點(diǎn)處的導(dǎo)數(shù)值相等得到3x12-2px1+3=3x22-2px2+3=m,把x1,x2看作方程3x2-2px+3-m=0的兩個(gè)根,利用根與系數(shù)關(guān)系得到x1+x2=$\frac{2}{3}$p,進(jìn)一步得到AB的中點(diǎn)坐標(biāo),然后再證明AB的中點(diǎn)在曲線C上,最后由AB中點(diǎn)的縱坐標(biāo)相等求得實(shí)數(shù)p的值,注意檢驗(yàn).
解答 解:由y=x3-px2+3x,得y′=3x2-2px+3,
設(shè)A(x1,y1),B(x2,y2),
則曲線C在A,B處的切線的斜率分別為3x12-2px1+3,
3x22-2px2+3,
∵曲線C在A,B處的切線平行,
∴3x12-2px1+3=3x22-2px2+3,
令3x12-2px1+3=3x22-2px2+3=m,
∴x1,x2是方程3x2-2px+3-m=0的兩個(gè)根,
則x1+x2=$\frac{2}{3}$p,
下面證線段AB的中點(diǎn)在曲線C上,
∵$\frac{{{x}_{1}}^{3}-p{{x}_{1}}^{2}+3{x}_{1}+{{x}_{2}}^{3}-p{{x}_{2}}^{2}+3{x}_{2}}{2}$
=$\frac{({x}_{1}+{x}_{2})[({x}_{1}+{x}_{2})^{2}-3{x}_{1}{x}_{2}]-p[({x}_{1}+{x}_{2})^{2}-2{x}_{1}{x}_{2}]+3({x}_{1}+{x}_{2})}{2}$
=$\frac{2p-\frac{4}{27}{p}^{3}}{2}$=p-$\frac{2}{27}$p3,
而($\frac{{x}_{1}+{x}_{2}}{2}$)3-p($\frac{{x}_{1}+{x}_{2}}{2}$)2+3•$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{1}{27}$p3-$\frac{1}{9}$p3+p
=p-$\frac{2}{27}$p3,
∴線段AB的中點(diǎn)在曲線C上,
由x1+x2=$\frac{2}{3}$p,知線段的中點(diǎn)為($\frac{1}{3}$p,$\frac{1}{9}$($\frac{1}{3}$p-8)),
∴-$\frac{8}{9}$+$\frac{1}{27}$p=p-$\frac{2}{27}$p3,解得p=-1,-3或4.
當(dāng)p=-1時(shí),y=x3+x2+3x的導(dǎo)數(shù)為y′=3x2+2x+3>0恒成立,
即函數(shù)為遞增函數(shù),直線與曲線只有一個(gè)交點(diǎn),舍去;
p=-3,或4時(shí),y=x3+3x2+3x單調(diào),不成立.
p=4時(shí),y=x3-px2+3x不單調(diào),成立.
故選:A.
點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程,求解該題的關(guān)鍵是利用AB中點(diǎn)的坐標(biāo)相等,關(guān)鍵是證明AB的中點(diǎn)在曲線C上,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 1 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
支持 | 反對(duì) | 合計(jì) | |
男性 | 30 | 15 | 45 |
女性 | 45 | 10 | 55 |
合計(jì) | 75 | 25 | 100 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com