分析 由已知條件求出直線(xiàn)l的普通方程為x+y-6=0,圓C的普通方程為x2+(y-2)2=4,由此能求出圓心到直線(xiàn)l的距離.
解答 解:∵在平面直角坐標(biāo)系xOy中,直線(xiàn)l的參數(shù)方程為$\left\{\begin{array}{l}{x=t+3}\\{y=3-t}\end{array}\right.$(參數(shù)t∈R),圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ+2}\end{array}\right.$,(參數(shù)θ∈[0,2π)),
∴直線(xiàn)l的普通方程為x-3=3-y,即x+y-6=0,
圓C的參數(shù)方程為$\left\{\begin{array}{l}{cosθ=\frac{x}{2}}\\{sinθ=\frac{y-2}{2}}\end{array}\right.$,(參數(shù)θ∈[0,2π)),
∴圓C的方程為x2+(y-2)2=4,圓心C(0,2),
∴圓心C(0,2)到直線(xiàn)l:x+y-6=0的距離:
d=$\frac{|0+2-6|}{\sqrt{{1}^{2}+{1}^{2}}}$=2$\sqrt{2}$.
故答案為:2$\sqrt{2}$.
點(diǎn)評(píng) 本題考查圓心到直線(xiàn)的距離的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意參數(shù)方程和普通方程的互化和點(diǎn)到直線(xiàn)的距離公式的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (3+$\sqrt{2}$)a2 | B. | 4a2 | C. | (4+$\sqrt{2}$)a2 | D. | 3$\sqrt{2}$a2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{32}{3}$ | B. | $\frac{64}{3}$ | C. | 16 | D. | $\frac{80}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com