8.若$\sqrt{(2-x)^{2}}$+($\sqrt{x-1}$)2=1,求:①變量x的取值范圍;②實(shí)數(shù)a滿足不等式|ax-3|≤1.

分析 ①由x-1≥0,先求出|2-x|+x-1=1,通過討論x和2的大小,從而求出x的范圍,②問題轉(zhuǎn)化為2≤ax≤4,通過x的范圍,求出a的值即可.

解答 解:①∵x-1≥0,∴x≥1,
∵$\sqrt{(2-x)^{2}}$+($\sqrt{x-1}$)2=1,
∴|2-x|+x-1=1,
1≤x≤2時(shí):2-x+x-1=1,成立,
x>2時(shí):x-2+x-1=1,解得:x=2,無解,
∴x的取值范圍是{x|1≤x≤2};
②∵|ax-3|≤1,
∴-1≤ax-3≤1,
∴2≤ax≤4,
由①{x|1≤x≤2};
得:a≤ax≤2a,
∴a=2.

點(diǎn)評(píng) 本題考察了解絕對(duì)值不等式,考察分類討論思想以及二次根式的性質(zhì),是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知定點(diǎn) A($-\frac{1}{2}$,0),B是圓C:(x $-\frac{1}{2}$)2+y2=4上的一個(gè)動(dòng)點(diǎn),線段AB的垂直平分線交BC于M點(diǎn),求動(dòng)點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知p:M={(x,y)|tx-y≤3},且(2,1)∈M,(1,-4)∉M,q:集合A={x|-2≤x≤5},B={x|t+1≤x≤2t-1},且B⊆A,若p或q為真,p且q為假,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}為遞增數(shù)列,且a1=1,{bn}為等比數(shù)列,且a2=b2,a5=b3,a14=b4
(1)求{an},{bn}的通項(xiàng)公式;
(2)已知數(shù)列{cn}滿足:an+1=$\frac{{c}_{1}}{_{1}}$+$\frac{{c}_{2}}{_{2}}$+…+$\frac{{c}_{n}}{_{n}}$,求數(shù)列{an•cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)$y=\sqrt{1-log_2^{\;}x}$的定義域?yàn)椋ā 。?table class="qanwser">A.(0,+∞)B.(0,2]C.[1,2]D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知拋物線C:y2=2px(p>0),過點(diǎn)A(12,0)作直線MN垂直x軸交拋物線于M、N兩點(diǎn),ME⊥ON于E,AE∥OM,O為坐標(biāo)原點(diǎn).
(Ⅰ)求p的值;
(Ⅱ)若拋物線C上存在不同的兩點(diǎn)G、H關(guān)于直線y=x+m對(duì)稱,求m取值的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)等差數(shù)列$5,4\frac{2}{7},3\frac{4}{7},…$的前n和為Sn,若使得Sn最大,則n等于( 。
A.7B.8C.6或7D.7或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$\frac{1}{2}$<a<4,函數(shù)f(x)=x3-3bx2+a有且僅有兩個(gè)不同的零點(diǎn)x1,x2,則|x1-x2|的取值范圍是( 。
A.($\frac{1}{2}$,1)B.(1,2)C.($\frac{3}{2}$,3)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)數(shù)列{an}為等比數(shù)列,且每項(xiàng)都大于1,則lga1lga2012$\sum_{i=1}^{2011}$$\frac{1}{lg{a}_{i}l{ga}_{i+1}}$的值為2011.

查看答案和解析>>

同步練習(xí)冊(cè)答案