11.若向量$\overrightarrow a$=(sinα,cosα-2sinα),$\overrightarrow b$=(1,2),且$\overrightarrow a$∥$\overrightarrow b$,則$\frac{1+2sinαcosα}{{{{sin}^2}α-{{cos}^2}α}}$=$-\frac{5}{3}$.

分析 直接由向量共線的坐標表示列式求得tanα,然后利用同角三角函數(shù)基本關(guān)系式化簡所求,計算求解.

解答 解:∵向量$\overrightarrow a$=(sinα,cosα-2sinα),$\overrightarrow b$=(1,2),且$\overrightarrow a$∥$\overrightarrow b$,
∴2sinα-(cosα-2sinα)=0,整理可得:4sinα=cosα,
∴tanα=$\frac{1}{4}$,
∴$\frac{1+2sinαcosα}{{{{sin}^2}α-{{cos}^2}α}}$=$\frac{co{s}^{2}α+si{n}^{2}α+2sinαcosα}{si{n}^{2}α-co{s}^{2}α}$=$\frac{1+ta{n}^{2}α+2tanα}{ta{n}^{2}α-1}$=$\frac{1+\frac{1}{16}+\frac{1}{2}}{\frac{1}{16}-1}$=$-\frac{5}{3}$.
故答案為:$-\frac{5}{3}$.

點評 本題考查平行向量的坐標運算,考查了同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡求值中的應(yīng)用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=tanx,x∈(-$\frac{π}{2}$,$\frac{π}{2}$),若f(x)≥1,則x的取值范圍是(  )
A.(-$\frac{π}{2}$,$\frac{π}{4}$)B.(-$\frac{π}{2}$,$\frac{π}{4}$]C.[$\frac{π}{4}$,$\frac{π}{2}$)D.($\frac{π}{4}$,$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)由數(shù)字1,2,3,4,5,6可以組成多少個沒有重復(fù)數(shù)字的正整數(shù)?
(2)由數(shù)字1,2,3,4,5,6可以組成多少個沒有重復(fù),并且比500000大的正整數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.A,B,C,D,E五人并排站成-行,如果A,B必須相鄰且B在A的右邊.耶么不同的排法種數(shù)是( 。
A.6B.24C.48D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某iphone手機專賣店對某市市民進行iphone手機認可度的調(diào)查,在已購買iPhone手機的1000名市民中隨機抽取100名,按年齡(單位:歲)進行統(tǒng)計的頻率分布表和頻率分布直方圖如下:
 分組(歲)頻數(shù) 
[25,30) 5
[30,35) x
[35,40) 35
[40,45) y
[45,50] 10
 合計100
(1)求頻數(shù)分布表中x,y的值;
(2)在抽取的這100名市民中,按年齡進行分層抽樣,抽取20人參加iphone手機宣傳活動,現(xiàn)從這20人中隨機選取2人各贈送一部iphone6s手機,設(shè)這2名市民中年齡在[40,45)內(nèi)的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若向量$\overrightarrow a$=(sinα,cosα-2sinα),$\overrightarrow b$=(1,2),且$\overrightarrow a$∥$\overrightarrow b$,則tanα=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知Sn為數(shù)列{an}的前n項和,且S3=1,S4=11,an+3=2an(n∈N*),則S3n+1=3×2n+1-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知ω>0,函數(shù)f(x)=sin(ωx+$\frac{5π}{6}$)的一條對稱軸為直線x=$\frac{π}{3}$,一個對稱中心是($\frac{π}{12}$,0),則ω有( 。
A.最小值2B.最大值2C.最小值1D.最大值1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知y=f(x)是R上的奇函數(shù),則f(2-$\sqrt{5}$)+f($\frac{1}{2+\sqrt{5}}$)=0.

查看答案和解析>>

同步練習冊答案