5.為了考察兩個變量x和y之間的線性相關(guān)性,甲、乙兩位同學(xué)各自獨立地做100次和150次試驗,并且利用線性回歸方法,求得回歸直線分別為t1和t2,已知兩人在試驗中發(fā)現(xiàn)對變量x的觀測數(shù)據(jù)的平均值都是s,對變量y的觀測數(shù)據(jù)的平均值都是t,那么下列說法正確的是( 。
A.t1和t2有交點(s,t)B.t1與t2相交,但交點不一定是(s,t)
C.t1與t2必定平行D.t1與t2必定重合

分析 由題意知,兩個人在試驗中發(fā)現(xiàn)對變量x的觀測數(shù)據(jù)的平均值都是s,對變量y的觀測數(shù)據(jù)的平均值都是t,所以兩組數(shù)據(jù)的樣本中心點是(s,t),回歸直線經(jīng)過樣本的中心點,得到直線t1和t2都過(s,t).

解答 解:∵兩組數(shù)據(jù)變量x的觀測值的平均值都是s,
對變量y的觀測值的平均值都是t,
∴兩組數(shù)據(jù)的樣本中心點都是(s,t),
∵數(shù)據(jù)的樣本中心點一定在線性回歸直線上,
∴回歸直線t1和t2都過點(s,t),
∴兩條直線有公共點(s,t).
故選:A.

點評 本題考查回歸分析,考查線性回歸直線過樣本中心點,在一組具有相關(guān)關(guān)系的變量的數(shù)據(jù)間,這樣的直線可以畫出許多條,而其中的一條能最好地反映x與Y之間的關(guān)系,這條直線過樣本中心點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.Rt△ABC頂點A(0,0),B(0,4),C(-2,0),則△ABC內(nèi)角∠A的平分線方程是( 。
A.y=-xB.y=-$\frac{1}{2}$x(-$\frac{6}{5}$≤x≤0)C.y=-x(-$\frac{4}{5}$≤x≤0)D.y=-$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)為定義在R上的可導(dǎo)函數(shù),且f(x)>f′(x)對于x∈R恒成立.若e為自然對數(shù)的底數(shù),則下列關(guān)系一定成立的是(  )
A.e2015f(2015)>e2016f(2016)B.e2015f(2015)<e2016f(2016)
C.e2015f(2016)>e2016f(2015)D.e2015f(2016)<e2016f(2015)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某幾何體的三視圖如圖所示,則該幾何體的體積為24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.平面直角坐標(biāo)系xOy中,點A(-2,0),B(2,0),直線AM,BM相交于點M,且它們的斜率之積是$-\frac{3}{4}$.
(1)求點M的軌跡C的方程;
(2)直線l:y=x-1與曲線C相交于P1,P2兩點,Q是x軸上一點,若△P1P2Q的面積為$6\sqrt{2}$,求Q點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知點F是拋物線y2=2px(p>0)的焦點,P(2,y0)是拋物線上一點,若|PF|=3,則p=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,平面PAB⊥平面ABCD,AB∥CD,AB⊥AD,CD=2AB,E為PA的中點,M在PD上.
(I)求證:AD⊥PB;
(Ⅱ)若$\frac{PM}{PD}=λ$,則當(dāng)λ為何值時,平面BEM⊥平面PAB?
(Ⅲ)在(II)的條件下,求證:PC∥平面BEM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如表提供了某新生嬰兒成長過程中時間x(月)與相應(yīng)的體重y(公斤)的幾組對照數(shù)據(jù).
 x0123
 y33.54.55
(1)如y與x具有較好的線性關(guān)系,請根據(jù)表中提供的數(shù)據(jù),求出線性回歸方程:$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)由此推測當(dāng)嬰兒生長到五個月時的體重為多少?
參考公式:$\stackrel{∧}{y}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$$\overline{x}$;$\sum_{i=1}^{4}{x}_{i}{y}_{i}$=27.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知命題p:2和8的等比中項是4;命題q:平面內(nèi)到兩個定點F1,F(xiàn)2的距離之差等于常數(shù)2a(|F1F2|<2a)的點的軌跡是雙曲線,則下列命題為真命題的是( 。
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

同步練習(xí)冊答案