17.計(jì)算:$\lim_{n→∞}\frac{{{n^2}-3}}{{2{n^2}+n}}$=0.5.

分析 直接利用數(shù)列的極限的牙防組化簡(jiǎn)求解即可.

解答 解:$\lim_{n→∞}\frac{{{n^2}-3}}{{2{n^2}+n}}$=$\lim_{n→∞}\frac{1-\frac{3}{{n}^{2}}}{2+\frac{1}{n}}$=$\frac{1-0}{2+0}$=$\frac{1}{2}$=0.5.
故答案為:0.5.

點(diǎn)評(píng) 本題考查數(shù)列的極限的運(yùn)算法則的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在△ABC中,角A為鈍角,AB=3,$\overrightarrow{BC}$•$\overrightarrow{BA}$=12,當(dāng)角C最大時(shí),△ABC的面積等于( 。
A.2B.3C.5D.$\frac{15}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知⊙P經(jīng)過(guò)(4,0),(-2,0),(0,2$\sqrt{6}$-4)三點(diǎn),
(1)試問(wèn)點(diǎn)A(5,-1)是否在⊙P上?并說(shuō)明理由;
(2)過(guò)點(diǎn)B(-4,0)作⊙P的切線,求切線方程;
(3)若點(diǎn)C(x,y)為⊙P上一點(diǎn),求(x-5)2+(y-4)2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.根據(jù)已知條件求方程:
(1)已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是(-1,0),(1,0),并且經(jīng)過(guò)點(diǎn)(1,-$\frac{3}{2}$),求它的標(biāo)準(zhǔn)方程;
(2)求與橢圓$\frac{{x}^{2}}{40}$+$\frac{{y}^{2}}{15}$=1有相同焦點(diǎn),且離心率e=$\frac{5}{4}$的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,四邊形ABCD為等腰梯形,PD⊥平面ABCD,F(xiàn)為PC的中點(diǎn),CD=AD=PD,AB=4AE=2CD=4.
(1)求證:EF⊥PC;
(2)求點(diǎn)A到平面EDF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若a<0<b,則下列不等式恒成立的是( 。
A.$\frac{1}{a}>\frac{1}$B.-a>bC.a2>b2D.a3<b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在復(fù)平面上,滿足|z-1|=|z+i|(i為虛數(shù)單位)的復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)的軌跡為(  )
A.橢圓B.C.線段D.直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的圖象與x軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為$\frac{π}{2}$的等差數(shù)列,把函數(shù)f(x)的圖象沿x軸向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)g(x)的圖象.若在區(qū)間[0,π]上隨機(jī)取一個(gè)數(shù)x,則事件“g(x)≥1”發(fā)生的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.函數(shù)y=cos2x+2sinx在區(qū)間[-$\frac{π}{6}$,θ]上的最小值為-$\frac{1}{4}$,則θ的取值范圍是[$-\frac{π}{6},\frac{7π}{6}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案