分析 由題意先求出準(zhǔn)線方程x=-2,再求出p,從而得到拋物線方程,寫出第一象限的拋物線方程,設(shè)出切點(diǎn),并求導(dǎo),得到切線AB的斜率,再由兩點(diǎn)的斜率公式得到方程,解出方程求出切點(diǎn),再由兩點(diǎn)的斜率公式求出BF的斜率.
解答 解:∵點(diǎn)A(-2,3)在拋物線C:y2=2px的準(zhǔn)線上,
即準(zhǔn)線方程為:x=-2,
∴p>0,
∴-$\frac{p}{2}$=-2即p=4,
∴拋物線C:y2=8x,在第一象限的方程為y=2$\sqrt{2}$$\sqrt{x}$,
設(shè)切點(diǎn)B(m,n),則n=2$\sqrt{2}\sqrt{m}$,
又導(dǎo)數(shù)y′=2$\sqrt{2}•\frac{1}{2}•\frac{1}{\sqrt{x}}$,則在切點(diǎn)處的斜率為$\frac{\sqrt{2}}{\sqrt{m}}$,
∴$\frac{n-3}{m+2}=\frac{\sqrt{2}}{\sqrt{m}}$即$\sqrt{2}$m+2$\sqrt{2}$=2$\sqrt{2}$m-3$\sqrt{m}$,
解得$\sqrt{m}$=2$\sqrt{2}$(-$\frac{\sqrt{2}}{2}$舍去),
∴切點(diǎn)B(8,8),又F(2,0),
∴直線BF的斜率為$\frac{8-0}{8-2}$=$\frac{4}{3}$,
故答案為:$\frac{4}{3}$.
點(diǎn)評(píng) 本題主要考查拋物線的方程和性質(zhì),同時(shí)考查直線與拋物線相切,運(yùn)用導(dǎo)數(shù)求切線的斜率等,是一道基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 充分必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$ | B. | $\frac{a}$+$\frac{a}$ | C. | $\frac{a+b+2\sqrt{ab}+1}{\sqrt{a}+\sqrt}$ | D. | sinx+$\frac{1}{sinx}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若m⊥α,n?α,則m⊥n | B. | 若m⊥α,m⊥n,則n∥α | C. | 若m∥α,m⊥n,則n⊥α | D. | 若m∥α,n∥α,則m∥n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=1-x2 | B. | y=tanx | C. | y=sin2x | D. | y=5x-5-x |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com