分析 由已知得sin(α+β-β)=4sin(α+β),由此利用正弦函數(shù)加法定理和同角三角函數(shù)關系式能證明ttan(α+β)=$\frac{sinβ}{cosβ-4}$.
解答 證明:∵sinα=4sin(α+β),α+β≠kπ+$\frac{π}{2}$,k∈Z,
∴sin(α+β-β)=4sin(α+β),
∴sin(α+β)cosβ-cos(α+β)sinβ=4sin(α+β),
∴$\frac{sin(α+β)}{cosβ-4}$=cos(α+β)sinβ,
∴tan(α+β)=$\frac{sinβ}{cosβ-4}$.
點評 本題考查三角函數(shù)恒等式的證明,是中檔題,解題時要認真審題,注意正弦函數(shù)加法定理和同角三角函數(shù)關系式的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4種 | B. | 6種 | C. | 8種 | D. | 12種 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12 | B. | 9 | C. | 6 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com