1.如圖,二面角α-l-β的大小是30°,線段AB?α,B∈l,AB與l所成的角為30°.則AB與平面β所成的角的正弦值是$\frac{1}{4}$.

分析 過點A作平面β的垂線,垂足為C,在β內過C作l的垂線.垂足為D,連接AD,從而∠ADC為二面角α-l-β的平面角,連接CB,則∠ABC為AB與平面β所成的角,在直角三角形ABC中求出此角即可.

解答 解:過點A作平面β的垂線,垂足為C,
在β內過C作l的垂線.垂足為D
連接AD,有三垂線定理可知AD⊥l,
故∠ADC為二面角α-l-β的平面角,為30°
又由已知,∠ABD=30°
連接CB,則∠ABC為AB與平面β所成的角
設AD=2,則AC=1,CD=$\sqrt{3}$,AB=4
∴sin∠ABC=$\frac{1}{4}$.
故答案為:$\frac{1}{4}$.

點評 本題主要考查了平面與平面之間的位置關系,以及直線與平面所成角,考查空間想象能力、運算能力和推理論證能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.設α和β為不重合的兩個平面,給出下列命題:
①若α內的兩條相交直線分別平行于β內的兩條直線,則α∥β;
②若α外的一條直線l與α內的一條直線平行,則l∥α;
③設α∩β=l,若α內有一條直線垂直于l,則α⊥β;
④若直線l與平面α內的兩條直線垂直,則l⊥α.
其中所有的真命題的序號是①②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=x2-2x,且g(x)的圖象與f(x)的圖象關于點(2,-1)對稱,求函數(shù)g(x)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.求值:
(1)sin(-1740°)cos1470°+cos(-660°)sin750°+tan405°;
(2)$sin{\;}^2\frac{17π}{4}+tan{\;}^2\frac{11π}{6}tan\frac{9π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.若函數(shù)f(x)在定義域D內的某個區(qū)間I上是增函數(shù),且F(x)=$\frac{f(x)}{x}$在I上也是增函數(shù),則稱y=f(x)是I上的“完美增函數(shù)”.已知f(x)=ex+x,g(x)=lnx-1.
(1)判斷函數(shù)f(x)是否為區(qū)間(0,+∞)上的“完美增函數(shù)”;
(2)若函數(shù)g(x)是區(qū)(0,m]上的“完美增函數(shù)”,求整數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖為一個幾何體的三視圖
(1)畫出該幾何體的直觀.
(2)求該幾何體的體積.
(3)求該幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,AB∥DC,DC=DD1=2AD=2AB=2.
(1)求證:DB⊥平面B1BCC1;
(2)求直線A1B與平面DBC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,四邊形BCC1B1是圓柱的軸截面.AA1是圓柱的一條母線,已知AB=4,AC=2$\sqrt{2}$,AA1=3.
(1)求圓柱的表面積.
(2)求證:BA1⊥AC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若函數(shù)f(x)=ax(a>0且a≠1)的反函數(shù)的圖象過點(3,-1),則a=$\frac{1}{3}$.

查看答案和解析>>

同步練習冊答案