分析 過點A作平面β的垂線,垂足為C,在β內過C作l的垂線.垂足為D,連接AD,從而∠ADC為二面角α-l-β的平面角,連接CB,則∠ABC為AB與平面β所成的角,在直角三角形ABC中求出此角即可.
解答 解:過點A作平面β的垂線,垂足為C,
在β內過C作l的垂線.垂足為D
連接AD,有三垂線定理可知AD⊥l,
故∠ADC為二面角α-l-β的平面角,為30°
又由已知,∠ABD=30°
連接CB,則∠ABC為AB與平面β所成的角
設AD=2,則AC=1,CD=$\sqrt{3}$,AB=4
∴sin∠ABC=$\frac{1}{4}$.
故答案為:$\frac{1}{4}$.
點評 本題主要考查了平面與平面之間的位置關系,以及直線與平面所成角,考查空間想象能力、運算能力和推理論證能力,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com