相關(guān)習(xí)題
 0  224372  224380  224386  224390  224396  224398  224402  224408  224410  224416  224422  224426  224428  224432  224438  224440  224446  224450  224452  224456  224458  224462  224464  224466  224467  224468  224470  224471  224472  224474  224476  224480  224482  224486  224488  224492  224498  224500  224506  224510  224512  224516  224522  224528  224530  224536  224540  224542  224548  224552  224558  224566  266669 

科目: 來源: 題型:解答題

20.已知函數(shù)$f(x)=\sqrt{3}sin2x+2sin(x-\frac{π}{4})sin(x+\frac{π}{4})$.
(Ⅰ)求函數(shù)f(x)圖象的對(duì)稱軸方程;
(Ⅱ)求函數(shù)f(x)在區(qū)間$[-\frac{π}{12},\frac{π}{2}]$上的值域.

查看答案和解析>>

科目: 來源: 題型:填空題

19.△ABC是邊長(zhǎng)為2的等邊三角形,已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{AB}=2a$,$\overrightarrow{AC}=2a+b$,則 $\overrightarrow{a}•\overrightarrow$=-1.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.角θ的終邊過點(diǎn)(3a-9,a+2),且sin2θ≤0,則a的范圍是(  )
A.(-2,3)B.[-2,3)C.(-2,3]D.[-2,3]

查看答案和解析>>

科目: 來源: 題型:選擇題

17.下列函數(shù)中,滿足f(x+y)=f(x)f(y)的單調(diào)遞增函數(shù)是( 。
A.f(x)=x3B.$f(x)={(\frac{1}{2})^x}$C.f(x)=log2xD.f(x)=2x

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知全集U=R,集合$A=\{x|y=\sqrt{\frac{4-x}{x-2}}\},B=\{x|{x^2}-7x+12≤0\},則A∩$(∁UB)=( 。
A.(2,3)B.(2,4)C.(3,4]D.(2,4]

查看答案和解析>>

科目: 來源: 題型:選擇題

15.不等式2x-3y-5≥0表示的平面區(qū)域是( 。
A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:填空題

14.若圓x2+y2=4與圓x2+y2+2ax+a2-9=0(a>0)有公共點(diǎn),則a的取值范圍為[1,5].

查看答案和解析>>

科目: 來源: 題型:填空題

13.設(shè)集合M={a1,a2,…an}(n∈N+),對(duì)M的任意非空子集A,定義f(A)為A中的最大元素,當(dāng)A取遍M的所有非空子集時(shí),對(duì)應(yīng)的f(A)的和為Tn,若an=2n-1則:①T3=21,②Tn=$\frac{{4}^{n}-1}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

12.在平面直角坐標(biāo)系xOy中,使角的頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合.已知點(diǎn)P(x,y)
是角θ終邊上一點(diǎn),|OP|=r(r>0),定義f(θ)=$\frac{x-y}{r}$.對(duì)于下列說法:
①函數(shù)f(θ)的值域是$[-\sqrt{2},\sqrt{2}]$;
②函數(shù)f(θ)的圖象關(guān)于原點(diǎn)對(duì)稱;
③函數(shù)f(θ)的圖象關(guān)于直線θ=$\frac{3π}{4}$對(duì)稱;
④函數(shù)f(θ)是周期函數(shù),其最小正周期為2π;
⑤函數(shù)f(θ)的單調(diào)遞減區(qū)間是[2kπ-$\frac{3π}{4}$,2kπ+$\frac{π}{4}$],k∈Z.
其中正確的是①③④.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目: 來源: 題型:解答題

11.△ABC中,D是線段BC上的點(diǎn),sin∠BAD:sin∠CAD=1:3,△ADC的面積是△ADB面積的2倍.
(1)求$\frac{sinB}{sinC}$;
(2)若AD=1,BD=$\frac{\sqrt{2}}{2}$,求DC和AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案