相關(guān)習(xí)題
 0  224499  224507  224513  224517  224523  224525  224529  224535  224537  224543  224549  224553  224555  224559  224565  224567  224573  224577  224579  224583  224585  224589  224591  224593  224594  224595  224597  224598  224599  224601  224603  224607  224609  224613  224615  224619  224625  224627  224633  224637  224639  224643  224649  224655  224657  224663  224667  224669  224675  224679  224685  224693  266669 

科目: 來源: 題型:填空題

4.若sin2x>cos2x,則x的取值范圍是(kπ+$\frac{π}{4}$,$\frac{3π}{4}$+kπ)(k∈Z).

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知△ABC中的三個(gè)頂點(diǎn)坐標(biāo)分別為A(4,6),B(-2,0),C(0,-2),若圓x2+y2=r2上的所有點(diǎn)都在△ABC內(nèi)(包括邊界),則該圓的面積的最大值是( 。
A.B.$\frac{4}{5}$πC.$\sqrt{2}$πD.$\frac{2\sqrt{2}}{5}$π

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖所示,AD∥BC∥EF,平面ADFE⊥平面BCFE,AE⊥EF,BE⊥EF,AD=AE=BE=2,EF=3,BC=4,G為BC的中點(diǎn).
(1)求證:BD⊥EG;
(2)求二面角D-BF-C的余弦值.

查看答案和解析>>

科目: 來源: 題型:填空題

1.在平面直角坐標(biāo)系中,已知A(-2,-7),B(4,1),C(5,-6),則△ABC的外接圓半徑為5.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知直線m過雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1的左焦點(diǎn)F1,且與該雙曲線的左支交于A,B兩點(diǎn),若|AB|=2,雙曲線的右焦點(diǎn)為F2,則△ABF2的周長(zhǎng)為(  )
A.6B.8C.12D.20

查看答案和解析>>

科目: 來源: 題型:填空題

19.寫出一個(gè)以橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1和雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的離心率為根的方程x2-$\frac{5}{2}$x+1=0.

查看答案和解析>>

科目: 來源: 題型:解答題

18.在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸為正半軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4cosθ-2sinθ,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-t}\\{y=\frac{1}{2}+at}\end{array}\right.$(t為參數(shù),a為常數(shù)).
(1)求直線l普通方程與圓C的直角坐標(biāo)方程;
(2)若直線l分圓C所得的兩弧長(zhǎng)度之比為1:2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目: 來源: 題型:填空題

17.對(duì)于以下四個(gè)命題:
①若函數(shù)f(x)=logax(a>0,a≠1)在其定義域內(nèi)是減函數(shù),則loga2<0;
②設(shè)函數(shù)f(x)=2x+$\frac{1}{2x}$-1(x<0),則函數(shù)f(x)有最小值1;
③若向量$\overrightarrow a=(1,k)$,$\overrightarrow b=(-2,6)$,$\overrightarrow{a}$∥$\overrightarrow$,則k=-3;
④函數(shù)y=(sinx+cosx)2-1的最小正周期是2π.
其中正確命題的序號(hào)是①③.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知f(x)=log2(3x-2).
(1)求函數(shù)的定義域;
(2)若log2x>f(x),求x的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

15.著名英國(guó)數(shù)學(xué)和物理學(xué)家Issac Newton(1643年-1727年)曾提出了物質(zhì)在常溫環(huán)境下溫度變化的冷卻模型.把物體放在冷空氣中冷卻,如果物體原來的溫度是θ1℃,空氣的溫度是θ0℃,tmin后物體溫度θ℃,可由公式θ=θ+(θ-θ)e-kt(e為自然對(duì)數(shù)的底數(shù))得到,這里k是一個(gè)隨著物體與空氣的接觸狀況而定的正的常數(shù).現(xiàn)將一個(gè)原來溫度為62℃的物體放在15℃的空氣中冷卻,1min以后物體的溫度是52℃.
(Ⅰ)求k的值(精確到0.01);
(Ⅱ)該物體從原來的62℃開始冷卻多少min后溫度是32℃?
(參考數(shù)據(jù):ln$\frac{37}{47}$≈-0.24,ln$\frac{27}{47}$≈-0.55,ln$\frac{17}{47}$≈-1.02)

查看答案和解析>>

同步練習(xí)冊(cè)答案