相關習題
 0  224845  224853  224859  224863  224869  224871  224875  224881  224883  224889  224895  224899  224901  224905  224911  224913  224919  224923  224925  224929  224931  224935  224937  224939  224940  224941  224943  224944  224945  224947  224949  224953  224955  224959  224961  224965  224971  224973  224979  224983  224985  224989  224995  225001  225003  225009  225013  225015  225021  225025  225031  225039  266669 

科目: 來源: 題型:解答題

8.袋中裝有大小相等,質(zhì)地均勻的4個小球,其中有2個黑球和2個白球,游戲規(guī)則如下:甲每次從袋中任取一球,記錄后放回,共取3次;乙一次性從袋中取3個球,并記錄下顏色,甲、乙兩人取球互不影響,求:
(1)甲取球3次后記錄所得的黑球次數(shù)大于乙所取黑球個數(shù)的概率;
(2)設甲每次取到黑球得1分,取到白球得0分,游戲結(jié)束后甲所得總分為X,乙所得的總分為Y(取到1個黑球得1分,取到2個黑球得2分),記ξ=|X-Y|,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:解答題

7.正方體ABCD-A′B′C′D′棱長為1
(1)證明:面A′BD∥面B′CD′
(2)求點B′到面A′BD的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1,是否存在直線l,使其截雙曲線所得弦的中點為P(1,1)?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

5.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的左焦點為F,A(-a,0),B(0,b),C(0,-b)分別為其三個頂點.直線CF與AB交于點D,若橢圓的離心率$e=\frac{1}{2}$,則tan∠BDC=$-3\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.若拋物線y2=2px(p>0)的焦點為F,其準線經(jīng)過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左焦點,點M為這兩條曲線的一個交點,且|MF|=p,則雙曲線的離心率為( 。
A.$\frac{{2+\sqrt{2}}}{2}$B.$2+\sqrt{2}$C.$1+\sqrt{2}$D.$\frac{{1+\sqrt{2}}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.下列命題中正確命題的個數(shù)是( 。
(1)cosα≠0是$α≠2kπ+\frac{π}{2}(k∈Z)$的充分必要條件
(2)f(x)=|sinx|+|cosx|,則f(x)最小正周期是π
(3)若將一組樣本數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,則樣本的方差不變
(4)設隨機變量ζ服從正態(tài)分布N(0,1),若P(ζ>1)=p,則$P(-1<ζ<0)=\frac{1}{2}-p$.
A.4B.3C.2D.1

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖,在正方體ABCD-A1B1C1D1中,E為DD1的中點.
(Ⅰ)證明:BD1∥平面AEC;
(Ⅱ)證明:平面AEC⊥平面BDD1

查看答案和解析>>

科目: 來源: 題型:解答題

1.如圖,在直角梯形ABCD中,∠BAD=∠ADC=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=2a.
(1)求證:平面SAB⊥平面SAD;
(2)設SB的中點為M,當$\frac{CD}{AB}$為何值時,能使DM⊥MC?請給出證明.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知定點A(2,0),圓x2+y2=1上有一個動點Q,若AQ的中點為P.
(1)求動點P的軌跡方程;
(2)設P的軌跡為曲線C,過點$B(\frac{1}{2},\frac{1}{2})$作曲線C的切線,求切線方程.

查看答案和解析>>

科目: 來源: 題型:解答題

19.如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中點.
(1)求證:PA∥平面BDE;
(2)若PA=AB=2,求三棱錐D-BEC的體積.

查看答案和解析>>

同步練習冊答案