相關(guān)習(xí)題
 0  225072  225080  225086  225090  225096  225098  225102  225108  225110  225116  225122  225126  225128  225132  225138  225140  225146  225150  225152  225156  225158  225162  225164  225166  225167  225168  225170  225171  225172  225174  225176  225180  225182  225186  225188  225192  225198  225200  225206  225210  225212  225216  225222  225228  225230  225236  225240  225242  225248  225252  225258  225266  266669 

科目: 來(lái)源: 題型:解答題

18.已知函數(shù)$f(x)=2\sqrt{2}cosxsin(x-\frac{π}{4})+1$.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間$[\frac{π}{12},\;\;\frac{π}{6}]$上的最大值與最小值的和.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

17.已知等比數(shù)列{an}的公比為2,若a2+a3=4,則a1+a4=6.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

16.若x,y滿足$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≤0\\ y≥0\end{array}\right.$,則z=y-2|x|的最大值為( 。
A.-8B.-4C.1D.2

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

15.已知圓C:(x-2)2+y2=4,直線${l_1}:y=\sqrt{3}\;x$,l2:y=kx-1,若l1,l2被圓C所截得的弦的長(zhǎng)度之比為1:2,則k的值為( 。
A.$\sqrt{3}$B.1C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

14.已知數(shù)列A:a1,a2,a3,a4,a5,其中ai∈{-1,0,1},i=1,2,3,4,5,則滿足a1+a2+a3+a4+a5=3的不同數(shù)列A一共有(  )
A.15個(gè)B.25個(gè)C.30個(gè)D.35個(gè)

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

13.已知(1+bi)i=-1+i,則b的值為(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

12.如圖,四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為 4的菱形,PD=PB=4,∠BAD=60°,E為PA中點(diǎn).
(Ⅰ)求證:PC∥平面EBD;
(Ⅱ)求證:平面EBD⊥平面PAC;
(Ⅲ)若PA=PC,求三棱錐C-ABE的體積.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.倡導(dǎo)全民閱讀是傳承文明、更新知識(shí)、提高民族素質(zhì)的基本途徑.某調(diào)查公司隨機(jī)調(diào)查了1000位成年人一周的平均閱讀時(shí)間(單位:小時(shí)),他們的閱讀時(shí)間都在[0,20]內(nèi),將調(diào)查結(jié)果按如下方式分成五組:第一組[0,4),第二組[4,8),第三組[8,12),第四組[12,16),第五組[16,20],并繪制了頻率分布直方圖,如圖.假設(shè)每周平均閱讀時(shí)間不少于12小時(shí)的人,稱為“閱讀達(dá)人”.
(Ⅰ)求這1000人中“閱讀達(dá)人”的人數(shù);
(Ⅱ)從閱讀時(shí)間為[8,20]的成年人中按分層抽樣抽取9人做個(gè)性研究.從這9人中隨機(jī)抽取2人,求這2人都不是“閱讀達(dá)人”的概率.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.如圖,在△ABC中,點(diǎn)D在BC邊上,AD⊥AC,$cosB=\frac{{\sqrt{6}}}{3}$,$AB=3\sqrt{2}$,$BD=\sqrt{3}$.
(Ⅰ)求△ABD的面積;
(Ⅱ)求線段DC的長(zhǎng).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

9.已知下列函數(shù):①f(x)=x3-x;②f(x)=cos2x;③f(x)=ln(1-x)-ln(1+x),其中奇函數(shù)有2個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案