相關(guān)習(xí)題
 0  225643  225651  225657  225661  225667  225669  225673  225679  225681  225687  225693  225697  225699  225703  225709  225711  225717  225721  225723  225727  225729  225733  225735  225737  225738  225739  225741  225742  225743  225745  225747  225751  225753  225757  225759  225763  225769  225771  225777  225781  225783  225787  225793  225799  225801  225807  225811  225813  225819  225823  225829  225837  266669 

科目: 來源: 題型:解答題

3.如圖,梯形ABCD中,AB∥CD,AB=3CD.
(1)求證:$\overrightarrow{BC}$=-$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AD}$;
(2)若AB=3,AD=2,$\overrightarrow{AD}$•$\overrightarrow{BC}$=1,求$\overrightarrow{AC}$•$\overrightarrow{BD}$的值.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知f(x)的定義域是[0,2].
(1)求y=f(lgx)的定義域;
(2)求y=f(x+1)+f(x-1)的定義域.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知在△ABC中,設(shè)點O是△ABC的外心.求證:$\overrightarrow{AO}•\overrightarrow{AB}$=$\frac{1}{2}$$\overrightarrow{A{B}^{2}}$,$\overrightarrow{AO}$•$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{A{C}^{2}}$.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知數(shù)列{an}滿足:an≠0,a1=$\frac{1}{3}$,an-an+1=2an•an+1.(n∈N*).
(1)求證:{$\frac{1}{{a}_{n}}$}是等差數(shù)列,并求出an;
(2)證明:a1a2+a2a3+…+anan+1<$\frac{1}{6}$.

查看答案和解析>>

科目: 來源: 題型:填空題

19.設(shè)$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是兩個不共線向量,若向量$\overrightarrow$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,與$\overrightarrow{a}$=$2\overrightarrow{{e}_{1}}$-λ$\overrightarrow{{e}_{2}}$共線,則實數(shù)λ=-2.

查看答案和解析>>

科目: 來源: 題型:解答題

18.在△ABC中,角A,B,C所對的邊分別為a,b,c,($\sqrt{3}$+1)acosB-2bcosA=c
(1)求$\frac{tanA}{tanB}$的值;
(2)若a=$\sqrt{6}$,B=$\frac{π}{4}$,求△ABC的面積.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.若直線l與兩直線y=1,直線x-y-7=0分別交于M,N兩點且MN的中點為P(1,-1),則直線l的斜率等于( 。
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知P1(7,8),P2(1,-6),線段$\overrightarrow{{P}_{1}{P}_{2}}$上兩個三等分點的坐標分別是(5,$\frac{10}{3}$)、(3,-$\frac{4}{3}$).

查看答案和解析>>

科目: 來源: 題型:解答題

15.設(shè)tan2α=$\frac{3}{4}$(-π<α<π),求當(dāng)函數(shù)f(x)=sin(α+x)+sin(α-x)-2sinα的最小值為0時cosα的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.i是虛數(shù)單位,設(shè)復(fù)數(shù)z滿足|z|=1,則|$\frac{{z}^{2}-2z+2}{z-1+i}$|的最大值為( 。
A.$\sqrt{2}$-1B.2-$\sqrt{2}$C.$\sqrt{2}$+1D.2+$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案