相關(guān)習(xí)題
 0  225905  225913  225919  225923  225929  225931  225935  225941  225943  225949  225955  225959  225961  225965  225971  225973  225979  225983  225985  225989  225991  225995  225997  225999  226000  226001  226003  226004  226005  226007  226009  226013  226015  226019  226021  226025  226031  226033  226039  226043  226045  226049  226055  226061  226063  226069  226073  226075  226081  226085  226091  226099  266669 

科目: 來源: 題型:填空題

20.將橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1繞其中心逆時針旋轉(zhuǎn)90°,所得曲線的方程是$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{9}$=1.

查看答案和解析>>

科目: 來源: 題型:解答題

19.在三棱錐P-ABC中,∠PAB=∠PAC=∠ABC=90°,M是PB的中點,PA=AB=2.
(Ⅰ)求證:面PBC⊥面PAB;
(Ⅱ)若BC=1,求三棱錐A-PMC的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)f(x)=x3-ax2-3x.
(1)若f(x)在[1,+∞)上是增函數(shù),求實數(shù)a的取值范圍;
(2)已知函數(shù)g(x)=1n(1+x)-x+$\frac{k}{2}$x2(k≥0),討論函數(shù)g(x)的單調(diào)性.

查看答案和解析>>

科目: 來源: 題型:填空題

17.平面直角坐標(biāo)系xoy中,點P為橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的下頂點,M、N在橢圓上,若四邊形OPMN為平行四邊形,α為直線0N的傾斜角,若α∈[$\frac{π}{4}$,$\frac{π}{3}$],則橢圓C的離心率的取值范圍為$[\frac{\sqrt{6}}{3},\frac{2\sqrt{2}}{3}]$.

查看答案和解析>>

科目: 來源: 題型:解答題

16.如圖所示的幾何體A1B1C1D1-ABCD中,平面A1B1C1D1∥平面ABCD,A1B1C1D1是邊長為2的正方形,ABCD是矩形,AD=5,AA1B1B是矩形,A1A⊥平面ABCD,E為AD上的一點,AE=1.
(1)證明:平面B1CE⊥平面B1BE.
(2)設(shè)二面角B-B1C-E的平面角為θ,若cosθ=$\frac{\sqrt{6}}{3}$,求幾何體A1B1C1D1-ABCD的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖所示,在橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)中,F(xiàn)1,F(xiàn)2分別是橢圓的左右焦點,點B(0,-b)是橢圓C的下頂點,BF1的延長線交橢圓C于點A,點D和點A關(guān)于x軸對稱.
(1)若BF1=2,點D(-$\frac{8\sqrt{3}}{7}$,-$\frac{1}{7}$),求橢圓的標(biāo)準(zhǔn)方程;
(2)若$\overrightarrow{D{F}_{2}}$•$\overrightarrow{BA}$=0,求橢圓C的離心率e.

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{2}$=1(a>$\sqrt{2}$)的左右焦點分別為F1,F(xiàn)2,離心率為e,直線l:y=ex+a,P為點F1關(guān)于直線l對稱的點,若△PF1F2為等腰三角形,則a的值為$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.下列函數(shù)中在(-1,1)上是減函數(shù)的是( 。
A.y=$\frac{1}{2}$x2B.y=lnxC.y=$\frac{2}{x}$D.y=-$\frac{1}{3}$x3-2x

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知定點A(4,0),P是橢圓4x2+9y2=36上的動點,則線段AP的中點的軌跡方程是4(x-2)2+9y2=9.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知點P(x0,3)與點Q(x0,4)分別在橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1與拋物線y2=2px(p>0)上.
(1)求拋物線的方程;
(2)設(shè)點A(x1,y1),B(x2,y2)(y1≤0,y2≤0)是拋物線上的兩點,∠AQB的角平分線與x軸垂直,求直線AB在y軸上的截距的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案