相關(guān)習題
 0  227091  227099  227105  227109  227115  227117  227121  227127  227129  227135  227141  227145  227147  227151  227157  227159  227165  227169  227171  227175  227177  227181  227183  227185  227186  227187  227189  227190  227191  227193  227195  227199  227201  227205  227207  227211  227217  227219  227225  227229  227231  227235  227241  227247  227249  227255  227259  227261  227267  227271  227277  227285  266669 

科目: 來源: 題型:選擇題

17.若f(x)=($\frac{1}{{e}^{x}-1}$+$\frac{1}{2}$)+x,則函數(shù)f(x)的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點為F1,F(xiàn)2,M為短軸端點,且S${\;}_{M{F}_{1}{F}_{2}}$=4,離心率為$\frac{\sqrt{2}}{2}$,O為坐標原點.
(1)求橢圓C的方程;
(2)過點O作兩條射線,與橢圓C分別交于A,B兩點,且滿足|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|.證明:點O到直線AB的距離為定值.

查看答案和解析>>

科目: 來源: 題型:解答題

15.根據(jù)某水文觀測點的歷史統(tǒng)計數(shù)據(jù),得到某河流每年最高水位X(單位:米)的頻率分布直方圖如圖:
將河流最高水位落入各組的頻率作為概率,并假設(shè)每年河流最高水位相互獨立.
(Ⅰ)求在未來3年里,至多有1年河流最高水位X∈[27,31)的概率(結(jié)果用分數(shù)表示);
(Ⅱ)該河流對沿河A企業(yè)影響如下:當X∈[23,27)時,不會造成影響;當X∈[27,31)時,損失10000元;當X∈[31,35]時,損失60000元.為減少損失,現(xiàn)有三種應(yīng)對方案:
方案一:防御35米的最高水位,每年需要工程費用3800元;
方案二:防御31米的最高水位,每年需要工程費用2000元;
方案三:不采取措施;
試比較上述三種方案,哪種方案好,并請說明情況.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.若f(x)=xex-a有兩個零點,則實數(shù)a的取值范圍是( 。
A.($\frac{1}{e}$,+∞)B.(0,$\frac{1}{e}$)C.(-$\frac{1}{e}$,+∞)D.(-$\frac{1}{e}$,0)

查看答案和解析>>

科目: 來源: 題型:填空題

13.給出下列命題:
①若$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|-|{\overrightarrow b}|$,則存在實數(shù)λ,使得$\overrightarrow b=λ\overrightarrow a$;
②$a={log_{\frac{1}{3}}}2,b={log_{\frac{1}{2}}}3,c={({\frac{1}{3}})^{0.5}}$大小關(guān)系是c>a>b;
③已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是$\frac{a}=-3$;
④已知a>0,b>0,函數(shù)y=2aex+b的圖象過點(0,1),則$\frac{1}{a}+\frac{1}$的最小值是$4\sqrt{2}$.其中正確命題的序號是①② (把你認為正確的序號都填上).

查看答案和解析>>

科目: 來源: 題型:選擇題

12.如圖所示,M,N是函數(shù)y=2sin(ωx+ϕ)(ω>0)圖象與x軸的交點,點P在M,N之間的圖象上運動,當△MPN面積最大時,PM⊥PN,則ω=(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.8

查看答案和解析>>

科目: 來源: 題型:解答題

11.一次測試中,為了了解學(xué)生的學(xué)習情況,從中抽取了n個學(xué)生的成績(滿分為100分)進行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(1)求樣本容量n和頻率分布直方圖中x、y的值;
(2)在選取的樣本中,從成績是80分以上(含80分)的同學(xué)中隨機抽取3名參加志愿者活動,設(shè)X表示所抽取的3名同學(xué)中得分在[80,90)內(nèi)的學(xué)生個數(shù),求X的數(shù)學(xué)期望及方差.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.函數(shù)$f(x)=2sinxcosx-2\sqrt{3}{cos^2}x+\sqrt{3}$的圖象為
①圖象C關(guān)于直線$x=\frac{11π}{12}$對稱;
②函數(shù)f(x)在區(qū)間$(-\frac{π}{12},\frac{5π}{12})$內(nèi)是增函數(shù);
③由y=2sin2x的圖象向右平移$\frac{π}{3}$個單位長度可以得到圖象C;
以上三個論斷中,正確論斷的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目: 來源: 題型:解答題

9.復(fù)數(shù)z1=2sin$θ-\sqrt{3}i$,z2=1+(2cosθ)i,i為虛數(shù)單位,θ∈[$\frac{π}{3},\frac{π}{2}$];
(1)若z1•z2是實數(shù),求cos2θ的值;
(2)若復(fù)數(shù)z1、z2對應(yīng)的向量分別是$\overrightarrow{a}$、$\overrightarrow$,存在θ使等式($λ\overrightarrow{a}-\overrightarrow$)•($\overrightarrow{a}-λ\overrightarrow$)=0成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

8.若不等式a2+b2≥2kab對任意a、b∈R都成立,則實數(shù)k的取值范圍是[-1,1].

查看答案和解析>>

同步練習冊答案