相關(guān)習(xí)題
 0  228157  228165  228171  228175  228181  228183  228187  228193  228195  228201  228207  228211  228213  228217  228223  228225  228231  228235  228237  228241  228243  228247  228249  228251  228252  228253  228255  228256  228257  228259  228261  228265  228267  228271  228273  228277  228283  228285  228291  228295  228297  228301  228307  228313  228315  228321  228325  228327  228333  228337  228343  228351  266669 

科目: 來源: 題型:選擇題

6.經(jīng)過雙曲線$\frac{{x}^{2}}{4}$-y2=1右焦點的直線與雙曲線交于A,B兩點,若|AB|=4,則這樣的直線的條數(shù)為( 。
A.4條B.3條C.2條D.1條

查看答案和解析>>

科目: 來源: 題型:填空題

5.過點(0,3b)的直線l與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條斜率為正值的漸近線平行,若雙曲線C的右支上的點到直線l的距離恒大于b,則雙曲線C的離心率的最大值是3.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與拋物線x2=y-1只有一個公共點,則雙曲線的離心率為( 。
A.5B.$\frac{5}{4}$C.$\sqrt{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目: 來源: 題型:填空題

3.若雙曲線mx2-y2=1經(jīng)過拋物線y2=2x的焦點,則雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.關(guān)于雙曲線$\frac{x^2}{16}-\frac{y^2}{4}=1$與$\frac{y^2}{16}-\frac{x^2}{4}=1$的焦距和漸近線,下列說法正確的是( 。
A.焦距相等,漸近線相同B.焦距相等,漸近線不相同
C.焦距不相等,漸近線相同D.焦距不相等,漸近線不相同

查看答案和解析>>

科目: 來源: 題型:解答題

1.在平面直角坐標(biāo)系中,已知曲線C1:$\frac{x^2}{a^2}+{y^2}$=1(0<a<2),曲線C2:x2+y2-x-y=0,Q是C2上的動點,P是線段OQ延長線上的一點,且P滿足|OQ|•|OP|=4.
(Ⅰ)以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,化C2的方程為極坐標(biāo)方程,并求點P的軌跡C3的方程;
(Ⅱ)設(shè)M、N分別是C1與C3上的動點,若|MN|的最小值為$\sqrt{2}$,求a的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.離心率為2的雙曲線E的一個焦點到一條漸近線的距離為1,則E的標(biāo)準(zhǔn)方程可以是( 。
A.3x2-y2=1B.$\frac{x^2}{3}-{y^2}$=1C.x2-3y2=1D.${x^2}-\frac{y^2}{3}=1$

查看答案和解析>>

科目: 來源: 題型:選擇題

19.與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線y=$\frac{a}$x的垂直的直線l交雙曲線于A,B兩點,若向量$\overrightarrow{OA}$+$\overrightarrow{OB}$與$\overrightarrow{m}$=(9,-$\frac{1}{3}$)平行,則雙曲線C的離心率等于 ( 。
A.$\frac{\sqrt{10}}{3}$B.$\frac{\sqrt{14}}{3}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目: 來源: 題型:選擇題

18.矩形ABCD中,AD=mAB,E為BC的中點,若$\overrightarrow{AE}⊥\overrightarrow{BD}$,則m=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為y=$\frac{\sqrt{6}}{6}$x,則此雙曲線的離心率為( 。
A.$\frac{\sqrt{42}}{6}$B.$\frac{7}{6}$C.$\frac{\sqrt{5}}{2}$D.$\frac{5}{4}$

查看答案和解析>>

同步練習(xí)冊答案