相關(guān)習(xí)題
 0  251003  251011  251017  251021  251027  251029  251033  251039  251041  251047  251053  251057  251059  251063  251069  251071  251077  251081  251083  251087  251089  251093  251095  251097  251098  251099  251101  251102  251103  251105  251107  251111  251113  251117  251119  251123  251129  251131  251137  251141  251143  251147  251153  251159  251161  251167  251171  251173  251179  251183  251189  251197  266669 

科目: 來源: 題型:選擇題

6.函數(shù)y=$\sqrt{2-3x}$-(x+1)0的定義域?yàn)椋ā 。?table class="qanwser">A.(-1,$\frac{2}{3}$]B.(-1,$\frac{2}{3}$)C.(-∞,-1)∪(-1,$\frac{2}{3}$]D.[$\frac{2}{3}$,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

5.某高校共有學(xué)生15 000人,其中男生10 500人,女生4500人.為調(diào)查該校學(xué)生每周平均體育運(yùn)動時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).
(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動時(shí)間的頻率分布直方圖(如圖示),在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動時(shí)間超過4小時(shí),請完成每周平均體育運(yùn)動時(shí)間與性別列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動時(shí)間與性別有關(guān)”.
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知點(diǎn)D為等腰直角三角形ABC斜邊AB的中點(diǎn),則下列等式中恒成立的是( 。
A.$\overrightarrow{CD}=\frac{{\overrightarrow{CA}}}{{|\overrightarrow{CA}|}}+\frac{{\overrightarrow{CB}}}{{|\overrightarrow{CB}|}}$B.$\overrightarrow{AC}=\overrightarrow{AC}•\overrightarrow{AB}$C.$\overrightarrow{BC}=\overrightarrow{BC}•\overrightarrow{BA}$D.$(\overrightarrow{CA}+\overrightarrow{CB})•(\overrightarrow{CA}-\overrightarrow{CB})=0$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知i為虛數(shù)單位,且$|1+ai|=\sqrt{5}$,則實(shí)數(shù)a的值為( 。
A.1B.2C.1或-1D.2或-2

查看答案和解析>>

科目: 來源: 題型:選擇題

2.以F1(-1,0),F(xiàn)2(1,0)為焦點(diǎn)且與直線x-y+3=0有公共點(diǎn)的橢圓中,離心率最大的橢圓方程是(  )
A.$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{19}$=1B.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1C.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知正項(xiàng)數(shù)列{an}中,其前n項(xiàng)和為Sn,且an=2$\sqrt{{S}_{n}}$-1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

20.化簡計(jì)算
$(1){\;}_{\;}4{a^{\frac{2}{3}}}{b^{-\frac{1}{3}}}÷(-\frac{2}{3}{a^{-\frac{1}{3}}}{b^{-\frac{1}{3}}})$
$(2){\;}_{\;}{(\frac{2}{3})^{-2}}+{(1-\sqrt{2})^0}-{(3\frac{3}{8})^{\frac{2}{3}}}+\sqrt{{{(3-π)}^2}}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2}+1}\\{-2x}\end{array}}\right.$$\begin{array}{l}(x≤0)\\(x>0)\end{array}$,則f(f(1))的值是( 。
A.-2B.2C.-4D.5

查看答案和解析>>

科目: 來源: 題型:解答題

18.設(shè)函數(shù)$f(x)=cos(2x-\frac{4π}{3})+2{cos^2}x$
(1)把函數(shù)f(x)的圖象向右平移$\frac{π}{2}$個單位,再向下平移$\frac{3}{2}$個單位得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間$[{-\frac{π}{4},\frac{π}{6}}]$上的最小值,并求出此時(shí)x的值;
(2)已知△ABC中,角A,B,C的對邊分別為a,b,c.若$f(B+C)=\frac{3}{2},b+c=2$.求a的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知集合A={x|1≤x<7},B={x|2<x<10},C={x|5-a<x≤a}.
(Ⅰ)求A∪B,(∁RA)∩B;
(Ⅱ)若C⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案