相關(guān)習(xí)題
 0  251559  251567  251573  251577  251583  251585  251589  251595  251597  251603  251609  251613  251615  251619  251625  251627  251633  251637  251639  251643  251645  251649  251651  251653  251654  251655  251657  251658  251659  251661  251663  251667  251669  251673  251675  251679  251685  251687  251693  251697  251699  251703  251709  251715  251717  251723  251727  251729  251735  251739  251745  251753  266669 

科目: 來源: 題型:選擇題

12.已知棱長為2的正方體ABCD-A1B1C1D1,P是過頂點B,D,D1,B1圓上的一點,Q為CC1中點,則PQ與面ABCD所成角余弦值的取值范圍是( 。
A.$[0,\frac{{\sqrt{5}}}{5}]$B.$[\frac{{\sqrt{5}}}{5},1]$C.$[\frac{{\sqrt{10}}}{5},1]$D.$[\frac{{\sqrt{15}}}{5},1]$

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知命題p:“$\frac{x^2}{2m-1}+\frac{y^2}{2-m}=1$是橢圓的標(biāo)準(zhǔn)方程”,命題q:“$\frac{x^2}{m-1}+\frac{y^2}{m-3}=1$是雙曲線的標(biāo)準(zhǔn)方程”.且p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知命題p:雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上一點P到左焦點距離為8,則P到右焦點距離為2或14;命題q:橢圓離心率越大,橢圓越趨近于圓.則下列命題中為真命題的是( 。
A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知命題p:“方程$\frac{{x}^{2}}{2m-1}$+$\frac{{y}^{2}}{2-m}$=m+2表示的曲線是橢圓”,命題q:“方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{m-3}$=2m+1表示的曲線是雙曲線”.且p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

8.命題“如果一個雙曲線的離心率為$\sqrt{2}$,則它的漸近線互相垂直”的否命題為“如果一個雙曲線的離心率不為$\sqrt{2}$,則它的漸近線不垂直”.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知命題p:橢圓離心率越大,橢圓越扁;命題q:雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上一點P到左焦點距離為7,則P到右焦點距離為1或13.則下列命題中為真命題的是( 。
A.(?p)∨qB.p∧qC.(?p)∧(?q)D.(?p)∨(?q)

查看答案和解析>>

科目: 來源: 題型:選擇題

6.“點P到兩條坐標(biāo)軸距離相等”是“點P的軌跡方程為y=|x|”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.不充分不必要條件

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知定義在R上的奇函數(shù)f(x)=$\frac{{-{2^x}+n}}{{{2^{x+1}}+m}}$.
(1)求實數(shù)m、n的值;
(2)判斷f(x)的單調(diào)性,并證明.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知集合A={x|x<-1或x≥1},B={x|x≤2a或x≥a+1},若(∁RB)⊆A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.若$y={log_{3{a^2}-1}}x$在(0,+∞)內(nèi)為增函數(shù),且y=a-x也為增函數(shù),則a的取值范圍是( 。
A.$(\frac{{\sqrt{3}}}{3},\;\;1)$B.$(0,\;\;\frac{1}{3})$C.$(\frac{{\sqrt{3}}}{3},\;\;\frac{{\sqrt{6}}}{3})$D.$(\frac{{\sqrt{6}}}{3},1\;\;)$

查看答案和解析>>

同步練習(xí)冊答案