科目: 來源: 題型:
【題目】如圖,拋物線經(jīng)過點和點,與軸交于點.
(1)求該拋物線的解析式;
(2)點是直線上方拋物線上一動點,過點作于點,平行于軸,交于點,設(shè)點的橫坐標(biāo)為,試求出線段的最大值,并寫出此時點的坐標(biāo);
(3)拋物線上是否存在一點,使得,若存在,請直接寫出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在中,,,點是上一點,過點作于點,連接,,點,分別是,的中點,連接.
(1)問題發(fā)現(xiàn)
圖1中,線段與線段之間的數(shù)量關(guān)系為_____________;
(2)類比探究
將繞點順時針旋轉(zhuǎn)到圖2的位置,連接,.試問(1)中的結(jié)論是否仍然成立?請判斷并說明理由;
(3)問題解決
若,將繞點在平面內(nèi)順時針旋轉(zhuǎn),請直接寫出線段的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了改善寄宿制學(xué)校學(xué)生的居住條件,某市財政局準(zhǔn)備給部分學(xué)校加裝空調(diào).經(jīng)市場調(diào)研發(fā)現(xiàn):購買1臺種型號的空調(diào)和2臺種型號的空調(diào)共需資金6400元;購買2臺型空調(diào)和3臺型空調(diào)共需資金10600元.
(1)求,兩種型號的空調(diào)單價各是多少元;
(2)現(xiàn)計劃購進,兩種型號的空調(diào)共200臺,其中型空調(diào)為臺,并且要求公司15日內(nèi)(含15日)完成安裝調(diào)試.公司承諾:若型空調(diào)不大于75臺,則型空調(diào)一定能保證15天內(nèi)完成安裝與調(diào)試,同時型空調(diào)每天可以完成10臺的安裝與調(diào)試;價格方面,當(dāng)購買型空調(diào)不少于60臺時,公司給予型空調(diào)7折優(yōu)惠;當(dāng)購買型空調(diào)大于140臺時,公司給予型空調(diào)8折優(yōu)惠.若既能保證如期完成安裝調(diào)試又能使花費資金最少,應(yīng)購買,兩種型號的空調(diào)各多少臺?
查看答案和解析>>
科目: 來源: 題型:
【題目】在矩形中,,.分別以,所在直線為軸,軸,建立如圖所示的平面直角坐標(biāo)系.點是邊的中點,過點的反比例函數(shù)的圖象與邊交于點.
(1)求的值及點的坐標(biāo);
(2)問在軸上是否存在點,使得的值最小,若存在,請求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】核潛艇作為“三位一體”核打擊力量中的一種,對于一個國家來說,是水下核威懾的重要戰(zhàn)略武器.我國的核潛艇發(fā)展迅速,多次出色完成了戰(zhàn)略巡航任務(wù).一次,某型號核潛艇在水下400米的處以600米/分鐘的速度向正東方向航行時,發(fā)現(xiàn)斜上方仰角為水面上處有一可疑船只正沿著相同航向航行,跟蹤2分鐘后到達處,再次測得可疑船只在仰角為的處,請根據(jù)以上條件求出可疑船只航行的速度.(參考數(shù)據(jù):,,,)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在中,,點是外接圓的圓心,過點作的垂線,交的延長線于點,過點作的切線,交于點,連接,.
(1)求證:;
(2)填空:①當(dāng)的度數(shù)為_________時,四邊形為平行四邊形;
②當(dāng)時,的值為____________.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市正在開展“太極拳進校園”活動,為了解學(xué)生太極拳的練習(xí)情況,隨機抽取了部分學(xué)校學(xué)生進行問卷調(diào)查,將調(diào)查結(jié)果按照“每周練習(xí)6次或7次,每周練習(xí)4次或5次,每周練習(xí)2次或3次,每周練習(xí)0次或1次”四類分別進行統(tǒng)計,并繪制了下列兩幅尚不完整的統(tǒng)計圖.
請根據(jù)圖中信息,解答下列問題:
(1)此次共調(diào)查了___________名學(xué)生;
(2)在扇形統(tǒng)計圖中,扇形的圓心角度數(shù)為__________;
(3)請將條形統(tǒng)計圖補充完整;
(4)若該市約有30萬名學(xué)生,請你估計每周練習(xí)太極拳不少于4次的學(xué)生的人數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】2019年4月23日是中國海軍成立70周年的日子,我國在山東青島舉行了國際海上大閱兵.為增強愛國意識,某校以此次大閱兵為契機,開展了“學(xué)習(xí)海軍知識,增強愛國意識”答題比賽,進入決賽的10名同學(xué)的答題情況(共7道題)如下表所示:
答對題目數(shù)量(道) | 3 | 4 | 5 | 6 | 7 |
人數(shù)(人) | 1 | 2 | 4 | 2 | 1 |
則關(guān)于答對題目數(shù)量,下列說法正確的是( )
A.平均數(shù)是2.5B.中位數(shù)是4.5C.眾數(shù)是5D.方差是4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+8與x軸交于A、B兩點,交y軸于點C,連接BC,且點D坐標(biāo)為(﹣2,4),tan∠OBC=.
(1)求拋物線的解析式;
(2)P為第四象限拋物線上一點,連接PC、PD,設(shè)點P的橫坐標(biāo)為t,△PCD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)延長CD交x軸于點E,連接PE,直線DG與x軸交于點G,與PE交于點Q,且OG=2,點F在DQ上,∠DQE+∠BCF=45°,若FQ=2,求點P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ADBC內(nèi)接于⊙O,AB為⊙O的直徑,對角線AB、CD相交于點E.
(1)求證:∠BCD+∠ABD=90°;
(2)點G在AC的延長線上,連接BG,交⊙O于點Q,CA=CB,∠ABD=∠ABG,作GH⊥CD,交DC的延長線于點H,求證:GQ=GH.
(3)在(2)的條件下,過點B作BF∥AD,交CD于點F,GH=3CH,若CF=4,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com