相關(guān)習(xí)題
 0  225043  225051  225057  225061  225067  225069  225073  225079  225081  225087  225093  225097  225099  225103  225109  225111  225117  225121  225123  225127  225129  225133  225135  225137  225138  225139  225141  225142  225143  225145  225147  225151  225153  225157  225159  225163  225169  225171  225177  225181  225183  225187  225193  225199  225201  225207  225211  225213  225219  225223  225229  225237  266669 

科目: 來源: 題型:解答題

17.已知△ABC為非直角三角形,其內(nèi)角A、B、C的對邊分別為a、b、c,且有$\sqrt{3}$sin$\frac{C}{2}co{s}^{2}\frac{B}{2}-cos$$\frac{C}{2}$cos2$\frac{B}{2}-\frac{\sqrt{3}}{2}sin\frac{C}{2}+\frac{1}{2}cos\frac{C}{2}$=0.
(1)求角C;
(2)若c=3,sinB=3sinA,求a,b的值.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知數(shù)列{an}是等比數(shù)列,a3=4,且a3是a2+4與a4+14的等差中項;數(shù)列{bn}是等差數(shù)列,b2=16,其前n項和Tn滿足Tn=nλ•bn+1(λ為常數(shù),且λ≠1).
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的通項公式及λ的值.

查看答案和解析>>

科目: 來源: 題型:填空題

15.如圖,正方體ABCD-A1B1C1D1中,截面C1D1AB與底面ABCD所成二面角C1-AB-C的大小為$\frac{π}{4}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.如圖為一幾何體的三視圖,其中這三個視圖完全一樣,則該幾何體的表面積為( 。
A.$\sqrt{3}$B.2$\sqrt{2}$C.4D.6

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知角A為銳角,則f(A)=$\frac{[cos(π-2A)-1]sin(π+\frac{A}{2})sin(\frac{π}{2}-\frac{A}{2})}{si{n}^{2}(\frac{π}{2}-\frac{A}{2})-si{n}^{2}(π-\frac{A}{2})}$+cos2A的最大值為( 。
A.$\frac{\sqrt{2}+1}{2}$B.$\frac{\sqrt{2}-1}{2}$C.$\frac{\sqrt{3}-1}{4}$D.$\frac{\sqrt{3}+1}{4}$

查看答案和解析>>

科目: 來源: 題型:選擇題

12.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一個周期的圖象,如圖所示,則f(x)的解析式為( 。
A.2sin($\frac{x}{4}$-$\frac{π}{4}$)B.2sin($\frac{x}{4}$+$\frac{π}{4}$)C.2sin($\frac{πx}{4}$-$\frac{π}{4}$)D.2sin($\frac{πx}{4}$+$\frac{π}{4}$)

查看答案和解析>>

科目: 來源: 題型:填空題

11.如圖是一個幾何體的三視圖,若它的體積是3$\sqrt{3}$,則a=$\sqrt{3}$,該幾何體的表面積為2$\sqrt{3}$+18.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知M是橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{16}$=1上的點(diǎn),若F1,F(xiàn)2是橢圓的兩個焦點(diǎn),則|MF1|+|MF2|=( 。
A.6B.8C.18D.32

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知三棱錐P-ABC中,PA⊥平面ABC,底面ABC為邊長等于3的正三角形,D、M為AB、PB中點(diǎn),且△PAM為正三角形.
(1)求證:平面DMC⊥平面PAB;
(2)求點(diǎn)A到平面PBC的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,⊙O是△ABC的外接圓,D是$\widehat{AC}$的中點(diǎn),BD交AC于點(diǎn)E.
(1)求證:AD=$\sqrt{DE•DB}$;
(2)若CD=2$\sqrt{6}$,點(diǎn)O到AC的距離為1,求⊙O的半徑r.

查看答案和解析>>

同步練習(xí)冊答案