相關(guān)習(xí)題
 0  225651  225659  225665  225669  225675  225677  225681  225687  225689  225695  225701  225705  225707  225711  225717  225719  225725  225729  225731  225735  225737  225741  225743  225745  225746  225747  225749  225750  225751  225753  225755  225759  225761  225765  225767  225771  225777  225779  225785  225789  225791  225795  225801  225807  225809  225815  225819  225821  225827  225831  225837  225845  266669 

科目: 來源: 題型:選擇題

16.已知函數(shù)f(x)=xln(e2x+1)-x2+1,f(a)=2,則f(-a)的值為( 。
A.1B.0C.-1D.-2

查看答案和解析>>

科目: 來源: 題型:填空題

15.運(yùn)行如圖所示的偽代碼,其結(jié)果為17.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知函數(shù)f(x)的定義域為0,1],且f(x)的圖象連續(xù)不間斷.若函數(shù)f(x)滿足:對于給定的m (m∈R且0<m<1),存在x0∈[0,1-m],使得f(x0)=f(x0+m),則稱f(x)具有性質(zhì)P(m).
(1)已知函數(shù)f(x)=$\left\{\begin{array}{l}{-4x+1,0≤x≤\frac{1}{4}}\\{4x-1,\frac{1}{4}<x<\frac{3}{4}}\\{-4x+5,\frac{3}{4}≤x≤1}\end{array}\right.$,若f(x)具有性質(zhì)P(m),求m最大值;
(2)若函數(shù)f(x)滿足f(0)=f(1),求證:對任意k∈N*且k≥2,函數(shù)f(x)具有性質(zhì)P($\frac{1}{k}$).

查看答案和解析>>

科目: 來源: 題型:選擇題

13.定義在R上的函數(shù)f(x)滿足f(x-1)的對稱軸為x=1,f(x+1)=$\frac{4}{f(x)}$(f(x)≠0),且在區(qū)間(2015,2016)上單調(diào)遞減.已知α,β是鈍角三角形中兩銳角,則f(sinα)和f(cosβ)的大小關(guān)系是( 。
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)
C.f(sinα)=f(cosβ)D.以上情況均有可能

查看答案和解析>>

科目: 來源: 題型:填空題

12.若對任意的x≥2,都有(x+a)|x+a|+(ax)|x|≤0,則a的最大值為-1.

查看答案和解析>>

科目: 來源: 題型:填空題

11.在A、B、C、D、E五個不同城市中,經(jīng)氣象臺測定,明日有兩個城市下雨,則A、B兩市中至少有一個城市下雨的概率為$\frac{7}{10}$.

查看答案和解析>>

科目: 來源: 題型:填空題

10.通錫蘇學(xué)大教育欲舉辦主題為“我環(huán)保、我行動”的環(huán)保知識競猜活動.某校區(qū)準(zhǔn)備從甲、乙、丙、丁四名同學(xué)中隨機(jī)的選取兩名代表參加比賽,則甲、乙兩人至少有一人被選中的概率為$\frac{5}{6}$.

查看答案和解析>>

科目: 來源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}+x+1,x≤1}\\{5x-2,x>1}\end{array}}\right.$,若方程f(x)=m有兩個不相等的實數(shù)根x1、x2,且x1+x2<-1,則實數(shù)m的取值范圍為(3,13).

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)f(x)=|x+1|+|x-3|.
(1)請寫出函數(shù)f(x)在每段區(qū)間上的解析式,并在圖上的直角坐標(biāo)系中作出函數(shù)f(x)的圖象;
(2)若不等式|x+1|+|x-3|≥a+$\frac{1}{a}$對任意的實數(shù)x恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

7.某班為了調(diào)查同學(xué)們周末的運(yùn)動時間,隨機(jī)對該班級50名同學(xué)進(jìn)行了不記名的問卷調(diào)查,得到了如下表所示的統(tǒng)計結(jié)果:
運(yùn)動時間不超過2小時運(yùn)動時間超過2小時合計
男生102030
女生13720
合計232750
(1)根據(jù)統(tǒng)計結(jié)果,能否在犯錯誤概率不超過0.05的前提下,認(rèn)為該班同學(xué)周末的運(yùn)動時間與性別有關(guān)?
(2)用分層抽樣的方法,從男生中抽取6名同學(xué),再從這6名同學(xué)中隨機(jī)抽取2名同學(xué),求這兩名同學(xué)中恰有一位同學(xué)運(yùn)動時間超過2小時的概率.
附:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.845.0246.6357.87910.83

查看答案和解析>>

同步練習(xí)冊答案