相關(guān)習(xí)題
 0  226368  226376  226382  226386  226392  226394  226398  226404  226406  226412  226418  226422  226424  226428  226434  226436  226442  226446  226448  226452  226454  226458  226460  226462  226463  226464  226466  226467  226468  226470  226472  226476  226478  226482  226484  226488  226494  226496  226502  226506  226508  226512  226518  226524  226526  226532  226536  226538  226544  226548  226554  226562  266669 

科目: 來源: 題型:選擇題

2.圓(x-2)2+y2=4被直線x=1截得的弦長為(  )
A.1B.$\sqrt{3}$C.2D.$2\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

1.在直角坐標(biāo)系xOy中,曲線M的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=cos2θ}\end{array}\right.$(θ為參數(shù)),若以該直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線N的極坐標(biāo)方程為:ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$t(其中t為常數(shù)).
(I)若曲線N與曲線M只有一個公共點,求t的取值范圍;
(2)當(dāng)t=-2時,求曲線M上的點與曲線N上點的最小距離.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知等差數(shù)列{an}的公差d為整數(shù),且ak=k2+2,a2k=(k+2)2,其中k為常數(shù)且k∈N*
(1)求k及an
(2)設(shè)a1>1,{an}的前n項和為Sn,等比數(shù)列{bn}的首項為l,公比為q(q>0),前n項和為Tn,若存在正整數(shù)m,使得$\frac{{S}_{2}}{{S}_{m}}={T}_{3}$,求q.

查看答案和解析>>

科目: 來源: 題型:解答題

19.如圖,正三棱柱A1B1C1-ABC,點D,E分別是A1C,AB的中點.
(1)求證:ED∥平面BB1C1C;
(2)若AB=$\sqrt{2}$BB1,求證:A1B⊥平面B1CE.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知,如圖,在⊙O中,弦BA,CD延長線交于E點,EG與⊙O切于G點,AD延長線交EG于點F,且EF=FG.求證:EF∥BC.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.二次曲線$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù))的焦點坐標(biāo)為( 。
A.(±5,0)B.(0,5)C.(±$\sqrt{7}$,0)D.(0,±$\sqrt{7}$)

查看答案和解析>>

科目: 來源: 題型:解答題

16.在平面直角坐標(biāo)系下,曲線C1:x+2y-2a=0,曲線C2:$\left\{\begin{array}{l}{x=2cosθ}\\{y=1+2sinθ}\end{array}\right.$(θ為參數(shù))
(1)當(dāng)a=3時,求曲線C2上的點到C1的距離的最大值;
(2)若曲線C1,C2有公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.參數(shù)方程$\left\{\begin{array}{l}{x=t-1}\\{y={t}^{2}+2}\end{array}\right.$(t∈R)表示的曲線是( 。
A.經(jīng)過坐標(biāo)原點B.與x軸相交,但與y軸不相交
C.與y軸相交,但與x軸不相交D.不經(jīng)過坐標(biāo)原點,但與x軸、y軸相交

查看答案和解析>>

科目: 來源: 題型:解答題

14.在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}}\right.$,(α為參數(shù)),以原點O為極點,x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$.
(Ⅰ)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)P為曲線C1上的動點,求點P到C2上點的距離的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.在直角坐標(biāo)系xOy中,己知曲線C1的參數(shù)方程是$\left\{\begin{array}{l}{x=\sqrt{t}}\\{y=\frac{\sqrt{3t}}{3}}\end{array}\right.$(t為參數(shù)),在以坐標(biāo)原
點O為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2的極坐標(biāo)方程是ρ=2,求曲線C1與C2的交點在直角坐標(biāo)系中的直角坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案