相關(guān)習(xí)題
 0  231824  231832  231838  231842  231848  231850  231854  231860  231862  231868  231874  231878  231880  231884  231890  231892  231898  231902  231904  231908  231910  231914  231916  231918  231919  231920  231922  231923  231924  231926  231928  231932  231934  231938  231940  231944  231950  231952  231958  231962  231964  231968  231974  231980  231982  231988  231992  231994  232000  232004  232010  232018  266669 

科目: 來源: 題型:解答題

1.已知a>0,b>0,試比較M=$\sqrt{a}$+$\sqrt$與N=$\sqrt{a+b}$的大。

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.關(guān)于f(x)=3sin(2x+$\frac{π}{4}$)有以下命題,
①若f(x1)=f(x2)=0,則x1-x2=kπ(k∈Z);
②f(x)圖象與g(x)=3cos(2x-$\frac{π}{4}$)圖象相同;
③f(x)在區(qū)間[-$\frac{7π}{8}$,-$\frac{3π}{8}$]是減函數(shù);
④f(x)圖象關(guān)于點(-$\frac{π}{8}$,0)對稱.
其中正確的命題序號是( 。
A.②③④B.①④C.①②③D.②③

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x},x>0}\\{4-{2}^{-x},x≤0}\end{array}\right.$,若關(guān)于x的方程f(2x2+x)=a恰有6個不同的實數(shù)根,則實數(shù)a的取值范圍是[2,3].

查看答案和解析>>

科目: 來源: 題型:填空題

17.若非零向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$滿足$\overrightarrow a$+2$\overrightarrow b$+3$\overrightarrow c$=$\overrightarrow 0$,且$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow b$•$\overrightarrow c$=$\overrightarrow c$•$\overrightarrow a$,則$\overrightarrow b$與$\overrightarrow c$的夾角為$\frac{3π}{4}$.

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知拋物線方程為:x=$\frac{1}{4}$y2,其準(zhǔn)線方程為x=-1.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知函數(shù)f(x)=ax3+bx2+cx+d圖象與y軸交點坐標(biāo)為(0,4),其導(dǎo)函數(shù)y=f′(x)是以y軸為對稱軸的拋物線,大致圖象如圖所示.
(I)求函數(shù)f(x)的解析式;
(II)求函數(shù)f(x)的極值.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知直線l過點P(2,0),斜率為$\frac{4}{3}$,直線l和拋物線y2=2x相交于A、B兩點,線段AB的中點為M.求:
(1)寫出直線l的一個參數(shù)方程;
(2)線段PM的長|PM|;
(3)線段AB的長|AB|.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知命題p:關(guān)于x的不等式x2+(a-1)+a2<0有實數(shù)解,命題q:“y=(2a2-a)x為增函數(shù).若“p∧q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

12.(1)求經(jīng)過點的P($\frac{\sqrt{6}}{3}$,$\sqrt{3}$),Q($\frac{2\sqrt{2}}{3}$,1)的橢圓的標(biāo)準(zhǔn)方程;
(2)求與橢圓$\frac{{x}^{2}}{49}$+$\frac{{y}^{2}}{24}$=1有公共焦點,且離心率e=$\frac{5}{4}$的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊答案