相關(guān)習(xí)題
 0  245760  245768  245774  245778  245784  245786  245790  245796  245798  245804  245810  245814  245816  245820  245826  245828  245834  245838  245840  245844  245846  245850  245852  245854  245855  245856  245858  245859  245860  245862  245864  245868  245870  245874  245876  245880  245886  245888  245894  245898  245900  245904  245910  245916  245918  245924  245928  245930  245936  245940  245946  245954  266669 

科目: 來源: 題型:填空題

4.($\frac{2+2i}{\sqrt{3}-i}$)7-($\frac{2-2i}{1+\sqrt{3}i}$)7=$(-8\sqrt{3}-8)+(8\sqrt{3}-8)i$.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.如圖,PA切圓O于點A,割線PBC經(jīng)過圓心O,若PB=OB=1,OD平分∠AOC,交圓O于點D,連接PD交圓O于點E,則PE的長等于( 。
A.$\frac{{\sqrt{7}}}{7}$B.$\frac{{3\sqrt{7}}}{7}$C.$\frac{{5\sqrt{7}}}{7}$D.$\sqrt{7}$

查看答案和解析>>

科目: 來源: 題型:選擇題

2.在△ABC中,BC=5,G,O分別為△ABC的重心和外心,且$\overrightarrow{OG}•\overrightarrow{BC}$=5,則△ABC的形狀是( 。
A.銳角三角形B.鈍角三角形
C.直角三角形D.上述三種情況都有可能

查看答案和解析>>

科目: 來源: 題型:解答題

1.如圖,在矩形ABCD中,BC=2,E,F(xiàn)分別為AB,CD的中點,且沿AF,BF分別將△AFD與△BFC折起來,使其頂點C與D重合于點P,若所得三棱錐P-ABF的頂點P在底面ABF內(nèi)的射影O恰為EF的中點.
(1)求三棱錐P-ABF的體積;
(2)求折起前的△BCF與側(cè)面BPF所成二面角的大。

查看答案和解析>>

科目: 來源: 題型:解答題

20.如圖,三棱柱ABC-A1B1C1中,平面ABB1A1⊥底面ABC,AB=BC=CA=$\frac{1}{2}A{A_1}$,∠A1AB=120°,D、E分別是BC、A1C1的中點.
(Ⅰ)試在棱AB上找一點F,使DE∥平面A1CF;
(Ⅱ)在(Ⅰ)的條件下,求二面角A-A1C-F的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=2$\sqrt{3}$sinωxcosωx+2cos2ωx-1(ω>0)最小正周期為π,求函數(shù)f(x)的單調(diào)遞增區(qū)間及其圖象的對稱軸方程.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知f(x)=2sin(2x+$\frac{π}{6}$),若f(α)=$\frac{2}{3}$,α∈(0,$\frac{π}{8}$),求cos2α

查看答案和解析>>

科目: 來源: 題型:選擇題

17.如圖,在長方體ABCD-A1B1C1D1中,AA1=1,AB=BC=2,若M為四面體C1BCD內(nèi)的點(包含邊界),則直線A1M與平面A1B1C1D1所成角的余弦值的余弦的最小值為( 。
A.$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知四棱錐P-ABCD,AD∥BC,AB⊥BC,AD=2,AB=BC=PC=PD=1,∠APD=90°.
(1)求證:AC⊥平面PCD;
(2)求CD與平面APD所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:填空題

15.設(shè)f′(x)為f(x)的導(dǎo)函數(shù),f″(x)是f′(x)的導(dǎo)函數(shù),如果f(x)同時滿足下列條件:①存在x0,使f″(x0)=0;②存在ε>0,使f′(x)在區(qū)間(x0-ε,x0)單調(diào)遞增,在區(qū)間(x0,x0+ε)單調(diào)遞減.則稱x0為f(x)的“上趨拐點”;
如果f(x)同時滿足下列條件:①存在x0,使f″(x0)=0;②存在ε>0,使f′(x)在區(qū)間(x0-ε,x0)單調(diào)遞減,在區(qū)間(x0,x0+ε)單調(diào)遞增.則稱x0為f(x)的“下趨拐點”.
給出以下命題,其中正確的是①③④(只寫出正確結(jié)論的序號)
①0為f(x)=x3的“下趨拐點”;
②f(x)=x2+ex在定義域內(nèi)存在“上趨拐點”;
③f(x)=ex-ax2在(1,+∞)上存在“下趨拐點”,則a的取值范圍為($\frac{e}{2}$,+∞);
④f(x)=$\frac{1}{3}a{x^3}-\frac{1}{2}a(a-1){x^2}-{a^2}x+1$,若a為f(x)的“上趨拐點”,則a=-1.

查看答案和解析>>

同步練習(xí)冊答案