相關(guān)習(xí)題
 0  251204  251212  251218  251222  251228  251230  251234  251240  251242  251248  251254  251258  251260  251264  251270  251272  251278  251282  251284  251288  251290  251294  251296  251298  251299  251300  251302  251303  251304  251306  251308  251312  251314  251318  251320  251324  251330  251332  251338  251342  251344  251348  251354  251360  251362  251368  251372  251374  251380  251384  251390  251398  266669 

科目: 來源: 題型:選擇題

10.正四棱錐V-ABCD的側(cè)棱長與底面邊長相等,E是VA中點,O是底面中心,則異面直線EO與BC所成的角是( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目: 來源: 題型:選擇題

9.雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的焦點到它的漸近線的距離為( 。
A.eB.cC.aD.b

查看答案和解析>>

科目: 來源: 題型:選擇題

8.如圖,一個空間幾何體的正視圖和側(cè)視圖都是邊長為1的正方形,俯視圖是一個圓,那么這個幾何體的側(cè)面積為(  )
A.$\frac{π}{4}$B.$\frac{5}{4}π$C.πD.$\frac{3}{2}π$

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦點分別為F1、F2,記$c=\sqrt{{a^2}+{b^2}}$.P是直線$x=\frac{a^2}{c}$上一點,且PF1⊥PF2,|PF1|•|PF2|=4ab,則雙曲線的離心率是$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

6.某幾何體的三視圖如圖所示,則該幾何體中,面積最大的側(cè)面的面積為$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

5.【文】設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{8}$=1(a>0)的左、右焦點分別為F1、F2,其一條漸近線與圓(x-a)2+y2=4相切于點M,則△F1MF2的面積為( 。
A.4$\sqrt{2}$B.2$\sqrt{2}$C.8D.4

查看答案和解析>>

科目: 來源: 題型:解答題

4.在極坐標(biāo)系中,已知直線l的極坐標(biāo)方程為$ρsin(θ+\frac{π}{4})=1+\sqrt{2}$,圓C的圓心是$C(\sqrt{2},\frac{π}{4})$,半徑為$\sqrt{2}$.
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)求直線l被圓C所截得的弦長.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.從裝有n+1個球(其中n個白球,1個黑球)的口袋中取出m個球(0<m≤n,m,n∈N),共有$C_{n+1}^m$種取法.在這$C_{n+1}^m$種取法中,可以分成兩類:一類是取出的m個球全部為白球,一類是取出m-1個白球和1個黑球,共有$C_1^0•C_n^m+C_1^1•C_n^{m-1}=C_1^0•C_{n+1}^m$,即有等式:$C_n^m+C_n^{m-1}=C_{n+1}^m$成立.若(1≤k<m≤n,k,m,n∈N),根據(jù)上述思想化簡下列式子$C_k^0•C_n^m+C_k^1•C_n^{m-1}+C_k^2•C_n^{m-2}+…+C_k^k•C_n^{m-k}$=的結(jié)果為(  )
A.$C_{n+m}^m$B.$C_{n+k}^k$C.$C_{n+k}^m$D.$C_{n+m}^k$

查看答案和解析>>

科目: 來源: 題型:選擇題

2.如圖1,已知正方體ABCD-A1B1ClD1的棱長為a,動點M、N、Q分別在線段PM上.當(dāng)三棱錐Q-BMN的俯視圖如圖2所示時,三棱錐Q-BMN的正視圖面積等于( 。
A.$\frac{1}{2}$a2B.$\frac{1}{4}$a2C.$\frac{\sqrt{2}{a}^{2}}{4}$D.$\frac{\sqrt{3}{a}^{2}}{4}$

查看答案和解析>>

科目: 來源: 題型:解答題

1.(1)已知某圓圓心在x軸上,半徑為5,且截y軸所得線段長為8,求該圓的標(biāo)準(zhǔn)方程.
(2)已知雙曲線與橢圓$\frac{x^2}{16}$+$\frac{y^2}{49}$=1有公共的焦點,并且橢圓的離心率與雙曲線的離心率之比為$\frac{3}{7}$,求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊答案