科目: 來源: 題型:
【題目】設(shè)是公比為正整數(shù)的等比數(shù)列,是等差數(shù)列,且,,.
(1)求數(shù)列和的通項公式;
(2)設(shè)數(shù)列的前項和為.
①試求最小的正整數(shù),使得當時,都有成立;
②是否存在正整數(shù) ,使得成立?若存在,請求出所有滿足條件的;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)。
(Ⅰ)求證:函數(shù)有且只有一個極值點;
(Ⅱ)求函數(shù)的極值點的近似值,使得;
(Ⅲ)求證:對恒成立。
(參考數(shù)據(jù):)。
查看答案和解析>>
科目: 來源: 題型:
【題目】“開門大吉”是某電視臺推出的游戲節(jié)目。選手面對號8扇大門,依次按響門上的門鈴,
門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確答出這首歌的名字,
方可獲得該扇門對應(yīng)的家庭夢想基金。在一次場外調(diào)查中,發(fā)現(xiàn)參賽選手大多在以下兩個年齡段:
,(單位:歲),統(tǒng)計這兩個年齡段選手答對歌曲名稱與否的人數(shù)如下圖所示。
(Ⅰ)寫出列聯(lián)表,并判斷是否有的把握認為答對歌曲名稱與否和年齡有關(guān),說明你的理由。(下
面的臨界值表供參考)
0.1 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
(Ⅱ)在統(tǒng)計過的參賽選手中按年齡段分層選取9名選手,并抽取3名幸運選手,求3名幸運選手中在
歲年齡段的人數(shù)的分布列和數(shù)學(xué)期望。
(參考公式:,其中)
查看答案和解析>>
科目: 來源: 題型:
【題目】關(guān)于下列命題:
①若一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上同一個數(shù)后,方差恒不變;
②滿足方程的值為函數(shù)的極值點;
③命題“p且q為真” 是命題“p或q為真”的必要不充分條件;
④若函數(shù)(且)的反函數(shù)的圖像過點,則的最小值為;
⑤點是曲線上一動點,則的最小值是。
其中正確的命題的序號是____________(注:把你認為正確的命題的序號都填上)。
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)甲、乙、丙三人進行圍棋比賽,每局兩人參加,沒有平局。在一局比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為.比賽順序為:首先由甲和乙進行第一局的比賽,再由獲勝者與未參加比賽的選手進行第二局的比賽,依此類推,在比賽中,有選手獲勝滿兩局就取得比賽的勝利,比賽結(jié)束.
(1)求恰好進行了三局比賽,比賽就結(jié)束的概率;
(2)記從比賽開始到比賽結(jié)束所需比賽的局數(shù)為,求的概率分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲乙兩人玩一種游戲,每次由甲、乙各出1到5根手指,若和為偶數(shù)算甲贏,否則算乙贏.
(1)若以表示和為6的事件,求;
(2)現(xiàn)連玩三次,若以表示甲至少贏一次的事件,表示乙至少贏兩次的事件,試問與是否為互斥事件?為什么?
(3)這種游戲規(guī)則公平嗎?試說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校體育教研組研發(fā)了一項新的課外活動項目,為了解該項目受歡迎程度,在某班男生女生中各隨機抽取名學(xué)生進行調(diào)研, 統(tǒng)計得到如下列聯(lián)表:
喜歡 | 不喜歡 | 總計 | |
女生 | |||
男生 | |||
總計 |
附:參考公式及數(shù)據(jù)
(1)在喜歡這項課外活動項目的學(xué)生中任選人,求選到男生的概率;
(2)根據(jù)題目要求,完成列聯(lián)表,并判斷是否有的把握認為“喜歡該活動項目與性別有關(guān)”?
查看答案和解析>>
科目: 來源: 題型:
【題目】某化工廠引進一條先進生產(chǎn)線生產(chǎn)某種化工產(chǎn)品, 其生產(chǎn)的總成本(萬元)與年產(chǎn)量(噸)之間的函數(shù)關(guān)系式可以近似地表示為,已知此生產(chǎn)線年產(chǎn)量最大為噸.
(1)求年產(chǎn)量為多少噸時,生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;
(2)若毎噸產(chǎn)品平均出廠價為萬元,那么當年產(chǎn)量為多少噸時,可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com