科目: 來源: 題型:解答題
給定橢圓,稱圓心在坐標(biāo)原點(diǎn)O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個(gè)焦點(diǎn)分別是.
(1)若橢圓C上一動(dòng)點(diǎn)滿足,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點(diǎn)作直線l與橢圓C只有一個(gè)交點(diǎn),且截橢圓C的“伴隨圓”所得弦長(zhǎng)為,求P點(diǎn)的坐標(biāo);
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點(diǎn)到過兩點(diǎn)的直線的最短距離.若存在,求出a,b的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓的左、右焦點(diǎn)分別為,且,長(zhǎng)軸的一個(gè)端點(diǎn)與短軸兩個(gè)端點(diǎn)組成等邊三角形的三個(gè)頂點(diǎn).
(1)求橢圓方程;
(2)設(shè)橢圓與直線相交于不同的兩點(diǎn)M、N,又點(diǎn),當(dāng)時(shí),求實(shí)數(shù)m的取值范圍,
查看答案和解析>>
科目: 來源: 題型:解答題
橢圓與雙曲線有公共的焦點(diǎn),過橢圓E的右頂點(diǎn)作任意直線l,設(shè)直線l交拋物線于M、N兩點(diǎn),且.
(1)求橢圓E的方程;
(2)設(shè)P是橢圓E上第一象限內(nèi)的點(diǎn),點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為A、關(guān)于x軸的對(duì)稱點(diǎn)為Q,線段PQ與x軸相交于點(diǎn)C,點(diǎn)D為CQ的中點(diǎn),若直線AD與橢圓E的另一個(gè)交點(diǎn)為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:解答題
已知是橢圓E:的兩個(gè)焦點(diǎn),拋物線的焦點(diǎn)為橢圓E的一個(gè)焦點(diǎn),直線y=上到焦點(diǎn)F1,F(xiàn)2距離之和最小的點(diǎn)P恰好在橢圓E上,
(Ⅰ)求橢圓E的方程;
(Ⅱ)如圖,過點(diǎn)的動(dòng)直線交橢圓于A、B兩點(diǎn),是否存在定點(diǎn)M,使以AB為直徑的圓恒過這個(gè)點(diǎn)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓,橢圓以的長(zhǎng)軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓和上, ,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓()的右焦點(diǎn)為,離心率為.
(Ⅰ)若,求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于,兩點(diǎn),分別為線段的中點(diǎn). 若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,已知拋物線:和⊙:,過拋物線上一點(diǎn)作兩條直線與⊙相切于、兩點(diǎn),分別交拋物線為E、F兩點(diǎn),圓心點(diǎn)到拋物線準(zhǔn)線的距離為.
(1)求拋物線的方程;
(2)當(dāng)的角平分線垂直軸時(shí),求直線的斜率;
(3)若直線在軸上的截距為,求的最小值.
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓,橢圓以的長(zhǎng)軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓和上, ,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:解答題
已知圓過定點(diǎn),圓心在拋物線上,、為圓與軸的交點(diǎn).
(1)當(dāng)圓心是拋物線的頂點(diǎn)時(shí),求拋物線準(zhǔn)線被該圓截得的弦長(zhǎng).
(2)當(dāng)圓心在拋物線上運(yùn)動(dòng)時(shí),是否為一定值?請(qǐng)證明你的結(jié)論.
(3)當(dāng)圓心在拋物線上運(yùn)動(dòng)時(shí),記,,求的最大值,并求出此時(shí)圓的方程.
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓C:的離心率為,長(zhǎng)軸長(zhǎng)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線交橢圓C于A、B兩點(diǎn),試問:在y軸正半軸上是否存在一個(gè)定點(diǎn)M滿足,若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com