相關(guān)習(xí)題
 0  224496  224504  224510  224514  224520  224522  224526  224532  224534  224540  224546  224550  224552  224556  224562  224564  224570  224574  224576  224580  224582  224586  224588  224590  224591  224592  224594  224595  224596  224598  224600  224604  224606  224610  224612  224616  224622  224624  224630  224634  224636  224640  224646  224652  224654  224660  224664  224666  224672  224676  224682  224690  266669 

科目: 來(lái)源: 題型:解答題

14.已知點(diǎn)$M(0,\sqrt{3})$是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一個(gè)頂點(diǎn),橢圓C的離心率為$\frac{1}{2}$.
(Ⅰ)求橢圓C的方程; 
(Ⅱ)已知點(diǎn)P(x0,y0)是定點(diǎn),直線$l:y=\frac{1}{2}x+m(m∈R)$交橢圓C于不同的兩點(diǎn)A、B,記直線PA、PB的斜率分別為k1、k2,求點(diǎn)P的坐標(biāo),使得k1+k2=0恒成立.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

13.已知函數(shù)$f(x)=\sqrt{3}sin(π-x)cos(-x)+sin(π+x)cos(\frac{π}{2}-x)$圖象上的一個(gè)最低點(diǎn)為A,離A最近的兩個(gè)最高點(diǎn)分別為B與C,則$\overrightarrow{AB}$•$\overrightarrow{AC}$=( 。
A.$9+\frac{π^2}{9}$B.$9-\frac{π^2}{9}$C.$4+\frac{π^2}{4}$D.$4-\frac{π^2}{4}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=|x-3|-|x+2|.
(1)若不等式f(x)≥|m-1|有解,求實(shí)數(shù)m的最小值M;
(2)在(1)的條件下,若正數(shù)a,b滿足3a+b=-M,證明:$\frac{3}$+$\frac{1}{a}$≥3.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.若關(guān)于x的方程25-|x+1|-4•5-|x+1|-m=0有實(shí)根,求m的取值范圍.
變題1:設(shè)有兩個(gè)命題:①關(guān)于x的方程9x+(4+a)•3x+4=0有解;②函數(shù)$f(x)={log_{2{a^2}-a}}x$是減函數(shù).當(dāng)①與②至少有一個(gè)真命題時(shí),實(shí)數(shù)a的取值范圍是$({-∞,-8}]∪({-\frac{1}{2},0})∪({\frac{1}{2},1})$
變題2:方程x2-2ax+4=0的兩根均大于1,則實(shí)數(shù)a的取值范圍是$[{2,\frac{5}{2}})$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

10.直線y=k(x-3)與雙曲線$\frac{x^2}{9}-\frac{y^2}{4}=1$只有一個(gè)公共點(diǎn),則k的值有( 。
A.3個(gè)B.2個(gè)C.1個(gè)D.無(wú)數(shù)個(gè)

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

9.下列命題中,
①方程$\frac{{x}^{2}}{4-t}$+$\frac{{y}^{2}}{t-1}$=1表示曲線C可能為圓;
②$\left\{\begin{array}{l}{x>1}\\{y>2}\end{array}\right.$是$\left\{\begin{array}{l}{x+y>3}\\{xy>2}\end{array}\right.$的充要條件;
③一個(gè)命題的逆命題為真,它的否命題也一定為真;
④“9<k<15”是“方程$\frac{{x}^{2}}{15-k}$+$\frac{{y}^{2}}{k-9}$=1表示橢圓”的充要條件.
⑤設(shè)P是以F1、F2為焦點(diǎn)的雙曲線一點(diǎn),且$\overrightarrow{{PF}_{1}}$•$\overrightarrow{{PF}_{2}}$=0,若△PF1F2的面積為9,則雙曲線的虛軸長(zhǎng)為6;其中真命題的序號(hào)是①③⑤(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

8.已知F1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的左、右焦點(diǎn),l1,l2為雙曲線的兩條漸近線.設(shè)過(guò)點(diǎn)M(b,0)且平行于l1的直線交l2于點(diǎn)P.若PF1⊥PF2,則該雙曲線的離心率為(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\frac{\sqrt{14-2\sqrt{41}}}{2}$D.$\frac{\sqrt{14+2\sqrt{41}}}{2}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

7.命題“存在x0∈R使得2${\;}^{{x}_{0}}$≤1”的否定是( 。
A.不存在x0∈R使得2${\;}^{{x}_{0}}$>0B.存在x0∈R使得2${\;}^{{x}_{0}}$>0
C.對(duì)任意x∈R,2x>0D.對(duì)任意x∈R,2x≤0

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

6.已知2sinα-cosα=0,求值:
(1)$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}}$;  
(2)$\frac{{1+{{sin}^2}α}}{{{{cos}^2}α-sinαcosα}}$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=tanx-sinx,下列命題中正確的是②③④(寫出所有正確命題的序號(hào))
①f(x)在(-$\frac{π}{2}$,$\frac{π}{2}$)上有3個(gè)零點(diǎn);
②f(x)的圖象關(guān)于點(diǎn)(π,0)對(duì)稱;
③f(x)的周期為2π;
④f(x)在($\frac{π}{2}$,π)上單調(diào)遞增.

查看答案和解析>>

同步練習(xí)冊(cè)答案