相關習題
 0  224821  224829  224835  224839  224845  224847  224851  224857  224859  224865  224871  224875  224877  224881  224887  224889  224895  224899  224901  224905  224907  224911  224913  224915  224916  224917  224919  224920  224921  224923  224925  224929  224931  224935  224937  224941  224947  224949  224955  224959  224961  224965  224971  224977  224979  224985  224989  224991  224997  225001  225007  225015  266669 

科目: 來源: 題型:解答題

3.某食品的保鮮時間t(單位:小時)與儲藏溫度x(單位:℃)滿足函數(shù)關系t=$\left\{\begin{array}{l}{64,x≤0}\\{{2}^{kx+6},x>0}\end{array}\right.$且該食品在4℃的保鮮時間是16小時.已知甲在某日上午10時購買了該食品,并將其遺放在室外,且此日的室外溫度隨時間變化如圖所示,給出以下四個結論:
①該食品在6℃的保鮮時間是8小時;
②當x∈[-6,6]時,該食品的保鮮時間t隨看x增大而逐漸減少;
③到了此日13時,甲所購買的食品還在保鮮時間內(nèi);
④到了此日14時,甲所購買的食品已然過了保鮮時間
其中,所有正確結論的序號是①④.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)y=f(x)的定義域為I,如果存在[a,b]⊆I,使函數(shù)f(x)在[a,b]上的值域為[ka,kb],k是正常數(shù),那么稱函數(shù)y=f(x),x∈I為閉函數(shù).
(Ⅰ)當k=$\frac{1}{2}$時,判斷函數(shù)f(x)=$\sqrt{x}$是否是閉函數(shù)?若是,則求出區(qū)間[a,b];
(Ⅱ)當k=$\frac{1}{2}$時.若函數(shù)f(x)=$\sqrt{x}$+t是閉函數(shù),求實數(shù)t的取值范圍;
(Ⅲ)當k=1時,是否存在實數(shù)m,當a+b≤2時,使函數(shù)f(x)=x2-2x+m是閉函數(shù)?若存在,求出實數(shù)m的范圍;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

1.在三棱錐ABC-A1B1C1中,∠BAC=90°,其正視圖和側視圖都是邊長為1的正方形,俯視圖是直角邊的長為1的等腰直角三角形,設點M,N,P分別是棱AB,BC,B1C1的中點.
(1)證明:A1B1⊥平面PMN;
(2)求三棱錐P-A1MN的體積.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.與圓(x-2)2+y2=1相切且在兩坐標軸上截距相等的直線共有(  )
A.2條B.3條C.4條D.6條

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)y=x2+2(a-2)x+5在(4,+∞)上是單調(diào)增函數(shù),求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知數(shù)列{an}滿足an=3an-1+5,a1=1,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目: 來源: 題型:解答題

17.設雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1,F(xiàn)1,F(xiàn)2是其兩個焦點,點M、N在雙曲線上.
(1)若M、N的中點為(2,$\frac{9}{2}$),求直線MN的方程.
(2)若∠F1MF2=60°時.求△F1MF2的面積.

查看答案和解析>>

科目: 來源: 題型:解答題

16.設a1=1,且an+1=3an+2•3n,(n∈N+),求an

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖是某圓拱橋的示意圖,這個圓拱橋的水面跨度AB=24m,拱高OP=8m.問:為使寬為10m的船能從橋下順利通過,應如何限制船體及裝載的貨物在水面以上的高度?

查看答案和解析>>

科目: 來源: 題型:填空題

14.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b)的兩個焦點F1,F(xiàn)2,點P在橢圓C上,且PF1⊥PF2,|PF1|=2,|PF2|=4,則橢圓C的方程為$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

同步練習冊答案