相關(guān)習(xí)題
 0  233478  233486  233492  233496  233502  233504  233508  233514  233516  233522  233528  233532  233534  233538  233544  233546  233552  233556  233558  233562  233564  233568  233570  233572  233573  233574  233576  233577  233578  233580  233582  233586  233588  233592  233594  233598  233604  233606  233612  233616  233618  233622  233628  233634  233636  233642  233646  233648  233654  233658  233664  233672  266669 

科目: 來源: 題型:選擇題

20.已知1<x<10,a=lgx2,b=lg(lgx),c=(lgx)2,那么有( 。
A.c>a>bB.c>b>aC.a>c>bD.a>b>c

查看答案和解析>>

科目: 來源: 題型:選擇題

19.設(shè)A={x|x2-4x+3≤0},B={x|2x-3<0},則圖中陰影部分表示的集合為(  )
A.(-3,-$\frac{3}{2}$)B.(-3,$\frac{3}{2}$)C.[1,$\frac{3}{2}$)D.($\frac{3}{2}$,3)

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知命題p:?x∈[1,2],x2-a≥0,命題q:?x0∈R,使得x02+(a-1)x0-1<0,若p∨q為真,p∧q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知函數(shù)f(x)=x2+x+a在區(qū)間(0,1)上有零點,則實數(shù)a的取值范圍為(  )
A.$(-∞,\frac{1}{4}]$B.$(-∞,\frac{1}{4})$C.(-2,0)D.[-2,0]

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知f(x)=$\left\{\begin{array}{l}(3a-1)x+4a(x≤1)\\{log_a}x(x>1)\end{array}$是R上的單調(diào)遞減函數(shù),則實數(shù)a的取值范圍為( 。
A.(0,1)B.$(0,\frac{1}{3})$C.$[\frac{1}{7},\frac{1}{3})$D.$[\frac{1}{7},1)$

查看答案和解析>>

科目: 來源: 題型:選擇題

15.若函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間[-1,2]上單調(diào),則實數(shù)a的取值范圍為(  )
A.[2,+∞)B.(-∞,-1]C.(-∞,-1]∪[2,+∞)D.(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知集合A={x|y=$\sqrt{x-4}$},B={x|-1≤2x-1≤0},則(∁RA)∩B=( 。
A.(4,+∞)B.$[0,\frac{1}{2}]$C.$(\frac{1}{2},4]$D.(1,4]

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知函數(shù)f(x)=2ax-2,g(x)=a(x-2a)(x+2-a),a∈R且a≠0.
(Ⅰ)若{x|f(x)g(x)=0}={1,2},求實數(shù)a的值;
(Ⅱ)若{x|f(x)<0或g(x)<0}=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}\frac{1}{4}+{log_4}x,x≥1\\{2^{-x}}-\frac{1}{4},x<1\end{array}$.
(Ⅰ)證明:f(x)≥$\frac{1}{4}$;
(Ⅱ)若f(x0)=$\frac{3}{4}$,求x0的值.

查看答案和解析>>

科目: 來源: 題型:填空題

11.定義max{{x,y}=$\left\{\begin{array}{l}x,x≥y\\ y,x<y\end{array}$,設(shè)f(x)=max{ax-a,-logax}(x∈R+,a>0,a≠1).若a=$\frac{1}{4}$,則f(2)+f(${\frac{1}{2}}$)=$\frac{3}{4}$;若a>1,則不等式f(x)≥2的解集是$\{x|0<x≤\frac{1}{a^2}$或x≥loga(a+2)}.

查看答案和解析>>

同步練習(xí)冊答案