科目: 來源: 題型:
【題目】(2017高考新課標(biāo)Ⅲ,理19)如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)證明:平面ACD⊥平面ABC;
(2)過AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓()的離心率為,且經(jīng)過點(diǎn).
(1)求橢圓的方程;
(2)過點(diǎn)作直線與橢圓交于不同的兩點(diǎn),,試問在軸上是否存在定點(diǎn)使得直線與直線恰關(guān)于軸對稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】冠狀病毒是一個大型病毒家族,已知可引起感冒以及中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀發(fā)熱咳嗽氣促和呼吸困難等.在較嚴(yán)重病例中,感染可導(dǎo)致肺炎嚴(yán)重急性呼吸綜合征腎衰竭,甚至死亡.某醫(yī)院為篩查冠狀病毒,需要檢驗血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗方式:
方式一:逐份檢驗,則需要檢驗n次.
方式二:混合檢驗,將其中且k≥2)份血液樣本分別取樣混合在一起檢驗.若檢驗結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為k+1.
假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨(dú)立的,且每份樣本是陽性結(jié)果的概率為p(0<p<1).現(xiàn)取其中且k≥2)份血液樣本,記采用逐份檢驗,方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.
(1)若,試求p關(guān)于k的函數(shù)關(guān)系式p=f(k).
(2)若p與干擾素計量相關(guān),其中2)是不同的正實數(shù),滿足x1=1且.
(i)求證:數(shù)列為等比數(shù)列;
(ii)當(dāng)時采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)的期望值更少,求k的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線的極坐標(biāo)方程為,以極點(diǎn)為直角坐標(biāo)原點(diǎn),以極軸為軸的正半軸建立平面直角坐標(biāo)系,將曲線向左平移個單位長度,再將得到的曲線上的每一個點(diǎn)的橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變,得到曲線
(1)求曲線的直角坐標(biāo)方程;
(2)已知直線的參數(shù)方程為,(為參數(shù)),點(diǎn)為曲線上的動點(diǎn),求點(diǎn)到直線距離的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】關(guān)于函數(shù)
(1)是的極小值點(diǎn);
(2)函數(shù)有且只有1個零點(diǎn);
(3)恒成立;
(4)設(shè)函數(shù),若存在區(qū)間,使在上的值域是,則.
上述說法正確的序號為_______.
查看答案和解析>>
科目: 來源: 題型:
【題目】袋子中有大小、形狀完全相同的四個小球,分別寫有“和”、“諧”、“!薄ⅰ皥@”四個字,有放回地從中任意摸出一個小球,直到“和”、“諧”兩個字都摸到就停止摸球,用隨機(jī)模擬的方法估計恰好在第三次停止摸球的概率。利用電腦隨機(jī)產(chǎn)生到之間取整數(shù)值的隨機(jī)數(shù),分別用,,,代表“和”、“諧”、“!、“園”這四個字,以每三個隨機(jī)數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下組隨機(jī)數(shù):
由此可以估計,恰好第三次就停止摸球的概率為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知雙曲線的左、右焦點(diǎn)分別為、,過右焦點(diǎn)作平行于一條漸近線的直線交雙曲線于點(diǎn),若的內(nèi)切圓半徑為,則雙曲線的離心率為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)A的極坐標(biāo)為,直線l的極坐標(biāo)方程為
(1)求直線l的直角坐標(biāo)方程與曲線C的普通方程;
(2)若B是曲線C上的動點(diǎn),G為線段的中點(diǎn).求點(diǎn)G到直線l的距離的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠改造一廢棄的流水線M,為評估流水線M的性能,連續(xù)兩天從流水線M生產(chǎn)零件上隨機(jī)各抽取100件零件作為樣本,測量其直徑后,整理得到下表:記抽取的零件直徑為X.
第一天
直徑/mm | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合計 |
件數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
第二天
直徑/mm | 58 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合計 |
件數(shù) | 1 | 1 | 2 | 4 | 5 | 21 | 34 | 21 | 3 | 3 | 2 | 1 | 1 | 1 | 100 |
經(jīng)計算,第一天樣本的平均值,標(biāo)準(zhǔn)差第二天樣本的平均值,標(biāo)準(zhǔn)差
(1)現(xiàn)以兩天抽取的零件來評判流水線M的性能.
(i)計算這兩天抽取200件樣本的平均值和標(biāo)準(zhǔn)差(精確到0.01);
(ii)現(xiàn)以頻率值作為概率的估計值,根據(jù)以下不等式進(jìn)行評判(P表示相應(yīng)事件的概率),①;②;③評判規(guī)則為:若同時滿足上述三個不等式,則設(shè)備等級為優(yōu);僅滿足其中兩個,則等級為良;若僅滿足其中一個,則等級為合格;若全部不滿足,則等級為不合格,試判斷流水線M的性能等級.
(2)將直徑X在范圍內(nèi)的零件認(rèn)定為一等品,在范圍以外的零件認(rèn)定為次品,其余認(rèn)定為合格品.現(xiàn)從200件樣本除一等品外的零件中抽取2個,設(shè)為抽到次品的件數(shù),求分布列及其期望.
附注:參考數(shù)據(jù):,,;
參考公式:標(biāo)準(zhǔn)差.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com