相關(guān)習題
 0  359242  359250  359256  359260  359266  359268  359272  359278  359280  359286  359292  359296  359298  359302  359308  359310  359316  359320  359322  359326  359328  359332  359334  359336  359337  359338  359340  359341  359342  359344  359346  359350  359352  359356  359358  359362  359368  359370  359376  359380  359382  359386  359392  359398  359400  359406  359410  359412  359418  359422  359428  359436  366461 

科目: 來源: 題型:

【題目】在平面直角坐標系中,拋物線經(jīng)過點0,),3,4).

1)求拋物線的表達式及對稱軸;

2)設(shè)點關(guān)于原點的對稱點為,點是拋物線對稱軸上一動點,記拋物線在,之間的部分為圖象(包含兩點).若直線與圖象有公共點,結(jié)合函數(shù)圖像,求點縱坐標的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,拋物線y=x2﹣bx+c交x軸于點A(1,0),交y軸于點B,對稱軸是x=2.

(1)求拋物線的解析式;

(2)點P是拋物線對稱軸上的一個動點,是否存在點P,使PAB的周長最小?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】解答下列各題

1)已知:如圖1,直線ABCD被直線AC所截,點EAC上,且∠A=∠D+CED,求證:ABCD;

2)如圖2,在正方形ABCD中,AB8,BE6,DF4

試判斷△AEF的形狀,并說明理由;

求△AEF的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】解答下列各題

1)如圖1,方格紙中的每個小方格都是邊長為1個單位長的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).

作出△ABC關(guān)于x軸對稱的△A1B1C1

如果P點的縱坐標為3,且P點到直線AA的距離為5,請直接寫出點P的坐標.

2)我國是世界上嚴重缺水的國家之一為了倡導“節(jié)約用水,從我做起”,小麗同學在她家所在小區(qū)的200住戶中,隨機調(diào)查了10個家庭在2019年的月均用水量(單位:t),并將調(diào)查結(jié)果繪成了如下的條形統(tǒng)計圖2

求這10個樣本數(shù)據(jù)的平均數(shù);

以上面的樣本平均數(shù)為依據(jù),自來水公司按2019年該小區(qū)戶月均用水量下達了2020年的用水計劃(超計劃要執(zhí)行階梯式標準收費)請計算該小區(qū)2020年的計劃用水量.

查看答案和解析>>

科目: 來源: 題型:

【題目】ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F

1)在圖1中說明CE=CF;

2)若∠ABC=90°,GEF的中點(如圖2),求∠BDG的度數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,拋物線x軸交于點A,B,與軸交于點C。過點CCDx軸,交拋物線的對稱軸于點D,連結(jié)BD。已知點A坐標為(-10)。

1)求該拋物線的解析式;

2)求梯形COBD的面積。

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,P是拋物線y=﹣x2+x+2在第一象限上的點,過點P分別向x軸和y軸引垂線,垂足分別為A,B,則四邊形OAPB周長的最大值為_____

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,ABCD中,∠ADC=120°,ADABE、F分別是ABCD的中點,過點AAGBD,交CB的延長線于點G

1)求證:DE=BE;

2)請判斷四邊形AGBD是什么特殊的四邊形,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在ABC中,CDAB邊上高,若AD=16,CD=12,BD=9

1)求ABC的周長;

2)判斷ABC的形狀并加以證明.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,給出下列說法:

①ab>0;

方程ax2+bx+c=0的根為x1=﹣1,x2=3;

③a+b+c>0;

x>1時,隨x值的增大而增大.

其中正確的說法有______

查看答案和解析>>

同步練習冊答案